Effluent organic matter facilitates anaerobic methane oxidation coupled with nitrous oxide reduction in river sediments

被引:0
|
作者
Yu, Chenhui [1 ]
He, Qiang [1 ]
Nie, Wen-Bo [1 ]
Zhang, Tanglong [1 ]
Wu, Hao [1 ]
Yang, Yulong [1 ]
Fu, Shibo [1 ]
Tan, Xin [1 ,2 ,3 ]
Chen, Yi [1 ]
机构
[1] Chongqing Univ, Coll Environm & Ecol, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Minist Educ, Chongqing 400045, Peoples R China
[2] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[3] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
关键词
Anaerobic oxidation of methane; Nitrous oxide reduction; River sediments; Effluent organic matter; Electron shuttle; WASTE-WATER; CARBON; EFOM;
D O I
10.1016/j.watres.2025.123415
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effluent organic matter (EfOM) from wastewater treatment plants (WWTPs) contains humic-like substances that function as electron shuttles, thereby facilitating microbially-mediated redox reactions. However, the mechanisms governing the coupled processes of anaerobic oxidation of methane (CH4) (AOM) and nitrous oxide (N2O) reduction in river sediments, which receive WWTPs effluents, remain poorly understood. In this study, an incubation experiment with anoxic river sediments was conducted to assess the impacts of EfOM on AOM and nitrous oxide reduction using different effluent dilution ratios. The results showed that EfOM significantly enhanced both processes. Specifically, the AOM rate increased from 8.1 to 14.3 mu g gdw- 1 d- 1, while the N2O reduction rate increased from 29.2 to 56.5 mu g gdw- 1 d- 1. The results of batch tests demonstrated that AOM process enhanced N2O reduction in the presence of EfOM, highlighting the critical role of EfOM in linking these processes. Nitrate-dependent anaerobic methane oxidation (n-DAMO) archaea and denitrifying bacteria dominated the sediment incubated with EfOM. Metagenomic and metatranscriptomic analyses revealed that the denitrifying bacteria exclusively reduce N2O, confirming the role of EfOM in facilitating electron transfer between n-DAMO archaea and N2O reducers. This indicates that effluent discharge could be a potential factor driving the concurrent sinks of methane and nitrous oxide, offering a perspective for investigating the impacts of WWTPs effluent on greenhouse gas sinks in freshwater ecosystems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction
    He, Qiuxiang
    Yu, Linpeng
    Li, Jibing
    He, Dan
    Cai, Xixi
    Zhou, Shungui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 688 : 664 - 672
  • [42] High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction
    Suarez-Zuluaga, Diego A.
    Jan Weijma
    Timmers, Peer H. A.
    Buisman, Cees J. N.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (05) : 3697 - 3704
  • [43] Anaerobic methane oxidation coupled to nitrate reduction using membrane biofilm reactors
    Lee, Hyung-Sool
    Alrashed, Wael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [44] Erratum: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
    Mohamed F. Haroon
    Shihu Hu
    Ying Shi
    Michael Imelfort
    Jurg Keller
    Philip Hugenholtz
    Zhiguo Yuan
    Gene W. Tyson
    Nature, 2013, 501 : 578 - 578
  • [45] Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor
    Luo, Jing-Huan
    Wu, Mengxiong
    Liu, Jianyong
    Qian, Guangren
    Yuan, Zhiguo
    Guo, Jianhua
    ENVIRONMENT INTERNATIONAL, 2019, 130
  • [46] The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps
    Joye, SB
    Boetius, A
    Orcutt, BN
    Montoya, JP
    Schulz, HN
    Erickson, MJ
    Lugo, SK
    CHEMICAL GEOLOGY, 2004, 205 (3-4) : 219 - 238
  • [47] Organic matter diagenesis, methane oxidation and their relation to ikaite precipitation in Antarctic sediments
    Lu, Zunli
    Pancost, Richard D.
    Aquilina, Alfred
    Rickaby, Rosalind E. M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A797 - A797
  • [48] Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor
    Dong, Qiu-Yi
    Wang, Zhen
    Shi, Ling-Dong
    Lai, Chun-Yu
    Zhao, He-Ping
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (25) : 26286 - 26292
  • [49] Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor
    Qiu-Yi Dong
    Zhen Wang
    Ling-Dong Shi
    Chun-Yu Lai
    He-Ping Zhao
    Environmental Science and Pollution Research, 2019, 26 : 26286 - 26292
  • [50] Coupled Dynamics of Iron and Phosphorus in Sediments of an Oligotrophic Coastal Basin and the Impact of Anaerobic Oxidation of Methane
    Slomp, Caroline P.
    Mort, Haydon P.
    Jilbert, Tom
    Reed, Daniel C.
    Gustafsson, Bo G.
    Wolthers, Mariette
    PLOS ONE, 2013, 8 (04):