Unified approach to reciprocal matrices with Kippenhahn curves containing elliptical components

被引:0
作者
Jiang, Muyan [1 ]
Spitkovsky, Ilya M. [2 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA USA
[2] New York Univ Abu Dhabi NYUAD, Math Program, Div Sci & Math, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Numerical range; reciprocal matrices; Kippenhahn curve; NUMERICAL RANGE;
D O I
10.1080/03081087.2024.2414830
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider tridiagonal matrices $ (a_{ij})_{i,j=1}<^>n $ (aij)i,j=1n with constant main diagonal and such that $ a_{i,i+1}a_{i+1,i}=1 $ ai,i+1ai+1,i=1 for $ i=1,\ldots,n-1 $ i=1,& mldr;,n-1. For these matrices, criteria are established under which their Kippenhahn curves contain elliptical components or even consist completely of such. These criteria are in terms of a system of homogeneous polynomial equations in variables $ (\vert {a_{j,j+1}}\vert -\vert {a_{j+1,j}}\vert )<^>2 $ (|aj,j+1|-|aj+1,j|)2, and established via a unified approach across arbitrary dimensions. The results are illustrated, and specific numerical examples are provided for n = 7, thus generalizing earlier work in the lower-dimensional setting.
引用
收藏
页数:23
相关论文
共 9 条
  • [1] Kippenhahn Curves of Some Tridiagonal Matrices
    Bebiano, Natalia
    da Providencia, Joao
    Spitkovsky, Ilya
    Vazquez, Kenya
    [J]. FILOMAT, 2021, 35 (09) : 3047 - 3061
  • [2] On Kippenhahn curves and higher-rank numerical ranges of some matrices
    Bebiano, Natalia
    da Providencia, Joao
    Spitkovsky, Ilya M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 629 : 246 - 257
  • [3] Reciprocal matrices: properties and approximation by a transitive matrix
    Bebiano, Natalia
    Fernandes, Rosario
    Furtado, Susana
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
  • [4] On some 4-by-4 matrices with bi-elliptical numerical ranges
    Geryba, Titas
    Spitkovsky, Ilya M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 855 - 870
  • [5] On some reciprocal matrices with elliptical components of their Kippenhahn curves
    Jiang, Muyan
    Spitkovsky, Ilya M.
    [J]. SPECIAL MATRICES, 2022, 10 (01): : 117 - 130
  • [6] Kippenhahn R, 1951, MATH NACHR, V6, P193
  • [7] VARGAS LG, 1982, MATH MODELLING, V3, P69, DOI 10.1016/0270-0255(82)90013-6
  • [8] The higher rank numerical range is convex
    Woerdeman, Hugo J.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2) : 65 - 67
  • [9] On the numerical range of a matrix
    Zachlin, Paul F.
    Hochstenbach, Michiel E.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2) : 185 - 225