Harmonic Analysis on Inhomogeneous Nilpotent Lie Groups

被引:0
作者
Arnal, Didier [1 ]
Currey, Bradley [2 ]
机构
[1] Univ Bourgogne Franche Compte, Inst Math Bourgogne, Dijon, France
[2] St Louis Univ, Dept Math & Stat, St Louis, MO USA
关键词
Inhomogeneous nilpotent Lie group; semi-direct product; coadjoint orbit; REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semi-direct product of a normal, vector subgroup by a connected, simply connected nilpotent Lie group. A detailed study of the coadjoint orbits of G in the dual space g(& lowast;) of its Lie algebra g is motivated by classical harmonic analysis on solvable Lie groups, culminating in the work of Auslander and Kostant, and by more recent work on generalized continuous wavelets. We apply a procedure for matrix reduction to construct a stratification of the space of coadjoint orbits, where each layer of the stratification has an explicit fiber bundle structure, and provides a criterion for the property of regularity for a coadjoint orbit. Examination of the Zariski open layer ohm(0) then yields an algebraic characterization for regularity, and for both regularity and integrality, of every orbit in ohm(0) . When the criterion for collective regularity holds, we construct a simple and explicit topological cross-section for the coadjoint orbits in ohm(0) . When a criterion fails, then the corresponding property fails for a dense G(delta) set in ohm(0).
引用
收藏
页码:873 / 910
页数:38
相关论文
共 18 条
[1]  
Arnal D., 2020, Representations of Solvable Lie Groups: Basic Theory and Examples
[2]   The Plancherel Formula for an Inhomogeneous Vector Group [J].
Arnal, Didier ;
Currey, Bradley ;
Dali, Bechir .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (06) :2837-2876
[3]   Characterization of regularity for a connected Abelian action [J].
Arnal, Didier ;
Currey, Bradley ;
Oussa, Vignon .
MONATSHEFTE FUR MATHEMATIK, 2016, 180 (01) :1-37
[4]   Regularity of abelian linear actions [J].
Arnal, Didier ;
Dali, Bechir ;
Currey, Bradley ;
Oussa, Vignon .
COMMUTATIVE AND NONCOMMUTATIVE HARMONIC ANALYSIS AND APPLICATIONS, 2013, 603 :89-109
[5]   CONSTRUCTION OF CANONICAL COORDINATES FOR EXPONENTIAL LIE GROUPS [J].
Arnal, Didier ;
Currey, Bradley ;
Dali, Bechir .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6283-6348
[6]   POLARIZATION AND UNITARY REPRESENTATIONS OF SOLVABLE LIE CROUPS [J].
AUSLANDER, L ;
KOSTANT, B .
INVENTIONES MATHEMATICAE, 1971, 14 (04) :255-+
[7]   Linear Dynamical Systems of Nilpotent Lie Groups [J].
Beltita, Ingrid ;
Beltita, Daniel .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
[8]  
Bernat P., 1972, Monographies de la Societe Mathematique de France
[9]  
DIXMIER J, 1961, CR HEBD ACAD SCI, V252, P2805
[10]   TRANSFORMATION GROUPS AND C-ALGEBRAS [J].
EFFROS, EG .
ANNALS OF MATHEMATICS, 1965, 81 (01) :38-&