Flexible anchor-based multi-view clustering with low-rank decomposition

被引:0
|
作者
Zhang, Zheng [1 ]
Huang, Yufang [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
Multi-view clustering; Anchor learning; Low-rank decomposition; Subspace clustering;
D O I
10.1007/s13042-024-02444-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view subspace clustering have attracted more attention recently due to their promising capabilities to reveal the underlying structure between data points. Nonetheless, most current methods endure high time computational complexity, that results in the inapplicability to medium and large-scale datasets. In addition, attributing to the existence of heterogeneous noise, it is tremendously arduous to study an effective low-dimensional subspace structure directly from the raw data points, leading to underperforming clustering results. To tackle these obstacles, we propose Flexible Anchor-based Multi-view Clustering with Low-rank Decomposition (FAMCL) method that combines the anchor learning with the learnable low-rank matrix factorization strategy. Specifically, the anchor point learning and anchor graph construction are fused into a joint optimization framework, which provides a solid foundation to boost the specific representations within different views. To delve deeper into the underlying structure, a low-rank decomposition strategy is applied, decomposing the anchor graph matrix into two components: an orthogonal matrix and a latent representation. Furthermore, an effective alternating direction iterative method with augmented Lagrangian multiplier is introduced to optimize our model. Extensive experiments on seven standard multi-view datasets demonstrate the advantages of FAMCL over other progressive methods.
引用
收藏
页码:3193 / 3209
页数:17
相关论文
共 50 条
  • [41] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [42] Multiple kernel low-rank representation-based robust multi-view subspace clustering
    Zhang, Xiaoqian
    Ren, Zhenwen
    Sun, Huaijiang
    Bai, Keqiang
    Feng, Xinghua
    Liu, Zhigui
    INFORMATION SCIENCES, 2021, 551 : 324 - 340
  • [43] Robust Low-Rank Graph Multi-View Clustering via Cauchy Norm Minimization
    Pu, Xinyu
    Pan, Baicheng
    Che, Hangjun
    MATHEMATICS, 2023, 11 (13)
  • [44] Consensus One-Step Multi-view Image Clustering Based on Low-Rank Tensor Learning
    Li, Lin
    Zhou, Xiaojun
    Lu, Zhiqiang
    Li, Dongxiao
    Zhou, Xiaoxiao
    Song, Li
    Wu, Na
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 117 - 121
  • [45] Low-rank tensor approximation with local structure for multi-view intrinsic subspace clustering
    Fu, Lele
    Yang, Jinghua
    Chen, Chuan
    Zhang, Chuanfu
    INFORMATION SCIENCES, 2022, 606 : 877 - 891
  • [46] Joint local smoothness and low-rank tensor representation for robust multi-view clustering
    Du, Yangfan
    Lu, Gui-Fu
    PATTERN RECOGNITION, 2025, 157
  • [47] Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding
    Wang, Shiping
    Xiao, Shunxin
    Zhu, William
    Guo, Yingya
    INFORMATION SCIENCES, 2022, 586 : 224 - 238
  • [48] Consistent affinity representation learning with dual low-rank constraints for multi-view subspace clustering
    Fu, Lele
    Li, Jieling
    Chen, Chuan
    NEUROCOMPUTING, 2022, 514 : 113 - 126
  • [49] Multi-view subspace clustering for learning joint representation via low-rank sparse representation
    Ghufran Ahmad Khan
    Jie Hu
    Tianrui Li
    Bassoma Diallo
    Shengdong Du
    Applied Intelligence, 2023, 53 : 22511 - 22530
  • [50] Robust low-rank kernel multi-view subspace clustering based on the Schatten p-norm and correntropy
    Zhang, Xiaoqian
    Sun, Huaijiang
    Liu, Zhigui
    Ren, Zhenwen
    Cui, Qiongjie
    Li, Yanmeng
    INFORMATION SCIENCES, 2019, 477 : 430 - 447