Comparison of the Statistical and Autoencoder Approach for Anomaly Detection in Big Data

被引:0
|
作者
Mali, Barasha [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Elect & Instrumentat Engn, Longowal, Sangrur, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND PRACTICES, IBDAP | 2024年
关键词
anomaly; big data; statistical techniques; machine learning; autoencoders;
D O I
10.1109/IBDAP62940.2024.10689688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper compares two anomaly detection methods, comparing the Z-score statistical technique with autoencoders for big datasets, which are crucial for industries like manufacturing, energy, and transportation to maintain smooth operations and avoid costly disruptions. Autoencoders outperformed Z-score statistical technique in anomaly detection on big datasets, achieving higher precision (0.94), F1-score (0.97), and recall (1.00) compared to Z-score statistical technique. This highlights autoencoders' superior ability to accurately identify anomalies, making them more effective for robust anomaly detection in complex data environments.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 50 条
  • [41] Anomaly Detection in Renewable Energy Big Data Using Deep Learning
    Katamoura, Suzan MohammadAli
    Aksoy, Mehmet Sabih
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2023, 19 (01)
  • [42] Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption
    Oprea, Simona-Vasilica
    Bara, Adela
    Puican, Florina Camelia
    Radu, Ioan Cosmin
    SUSTAINABILITY, 2021, 13 (19)
  • [43] Sequential Model-Free Anomaly Detection for Big Data Streams
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 421 - 425
  • [44] A comprehensive survey of anomaly detection techniques for high dimensional big data
    Srikanth Thudumu
    Philip Branch
    Jiong Jin
    Jugdutt (Jack) Singh
    Journal of Big Data, 7
  • [45] The statistical analysis in the era of big data
    Wang, Zelin
    Liu, Xinke
    Zhang, Weiye
    Zhi, Yingying
    Cheng, Shi
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2022, 40 (02) : 151 - 157
  • [46] Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process
    Tayalati, Faouzi
    Boukrouh, Ikhlass
    Bouhsaien, Loubna
    Azmani, Abdellah
    Azmani, Monir
    IEEE ACCESS, 2024, 12 : 95576 - 95598
  • [47] A comprehensive survey of anomaly detection techniques for high dimensional big data
    Thudumu, Srikanth
    Branch, Philip
    Jin, Jiong
    Singh, Jugdutt
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [48] Collective Anomaly Detection Using Big Data Distributed Stream Analytics
    Amen, Bakhtiar
    Grigoris, Antoniou
    2018 14TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2018, : 188 - 195
  • [49] Battery Fault Diagnosis and Anomaly Detection Based on Data Mining and Big Data Analysis
    Jiangwei, Shen
    Chuan, Yan
    Yonggang, Liu
    Shiquan, Shen
    Zheng, Chen
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (24): : 7979 - 7994
  • [50] Robust local outlier detection with statistical parameter for big data
    Lei, Jingsheng
    Jiang, Teng
    Wu, Kui
    Du, Haizhou
    Zhu, Lin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2015, 30 (05): : 411 - 419