Comparison of the Statistical and Autoencoder Approach for Anomaly Detection in Big Data

被引:0
|
作者
Mali, Barasha [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Elect & Instrumentat Engn, Longowal, Sangrur, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND PRACTICES, IBDAP | 2024年
关键词
anomaly; big data; statistical techniques; machine learning; autoencoders;
D O I
10.1109/IBDAP62940.2024.10689688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper compares two anomaly detection methods, comparing the Z-score statistical technique with autoencoders for big datasets, which are crucial for industries like manufacturing, energy, and transportation to maintain smooth operations and avoid costly disruptions. Autoencoders outperformed Z-score statistical technique in anomaly detection on big datasets, achieving higher precision (0.94), F1-score (0.97), and recall (1.00) compared to Z-score statistical technique. This highlights autoencoders' superior ability to accurately identify anomalies, making them more effective for robust anomaly detection in complex data environments.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 50 条
  • [31] Anomaly Detection for Big Log Data Using a Hadoop Ecosystem
    Son, Siwoon
    Gil, Myeong-Seon
    Moon, Yang-Sae
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 377 - 380
  • [32] EXAD: A System for Explainable Anomaly Detection on Big Data Traces
    Song, Fei
    Diao, Yanlei
    Read, Jesse
    Stiegler, Arnaud
    Bifet, Albert
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1435 - 1440
  • [33] Anomaly detection for cellular networks using big data analytics
    Li, Bing
    Zhao, Shengjie
    Zhang, Rongqing
    Shi, Qingjiang
    Yang, Kai
    IET COMMUNICATIONS, 2019, 13 (20) : 3351 - 3359
  • [34] Research Progress on Ship Anomaly Detection Based on Big Data
    Zhang, Bohan
    Ren, Hongxiang
    Wang, Pengjie
    Wang, Delong
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 316 - 320
  • [35] Big Data-driven Automated Anomaly Detection and Performance Forecasting in Mobile Networks
    Moysen, Jessica
    Ahmed, Furqan
    Garcia-Lozano, Mario
    Niemela, Jarno
    2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [36] BRNADS: Big data Real-Time Node Anomaly Detection in Social Networks
    Manjunatha, H. C.
    Mohanasundaram, R.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2018), 2018, : 929 - 932
  • [37] Anomaly Detection with Partitioning Overfitting Autoencoder Ensembles
    Lorbeer, Boris
    Botler, Max
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [38] Detection of False Data Injection Attacks Using the Autoencoder Approach
    Wang, Chenguang
    Tindemans, Simon
    Pan, Kaikai
    Palensky, Peter
    2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2020,
  • [39] A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems
    Borghesi, Andrea
    Bartolini, Andrea
    Lombardi, Michele
    Milano, Michela
    Benini, Luca
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 634 - 644
  • [40] TrueDetective 4.0: A Big Data Architecture for Real Time Anomaly Detection
    Argento, Luciano
    De Francesco, Erika
    Lambardi, Pasquale
    Piantedosi, Paolo
    Romeo, Carlo
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 449 - 458