Comparison of the Statistical and Autoencoder Approach for Anomaly Detection in Big Data

被引:0
|
作者
Mali, Barasha [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Elect & Instrumentat Engn, Longowal, Sangrur, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND PRACTICES, IBDAP | 2024年
关键词
anomaly; big data; statistical techniques; machine learning; autoencoders;
D O I
10.1109/IBDAP62940.2024.10689688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper compares two anomaly detection methods, comparing the Z-score statistical technique with autoencoders for big datasets, which are crucial for industries like manufacturing, energy, and transportation to maintain smooth operations and avoid costly disruptions. Autoencoders outperformed Z-score statistical technique in anomaly detection on big datasets, achieving higher precision (0.94), F1-score (0.97), and recall (1.00) compared to Z-score statistical technique. This highlights autoencoders' superior ability to accurately identify anomalies, making them more effective for robust anomaly detection in complex data environments.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 50 条
  • [21] Robust archetypoids for anomaly detection in big functional data
    Guillermo Vinue
    Irene Epifanio
    Advances in Data Analysis and Classification, 2021, 15 : 437 - 462
  • [22] A Rapid Anomaly Detection Technique for Big Data Curation
    Poonsirivong, Korn
    Jittawiriyanukoon, Chanintorn
    PROCEEDINGS OF 2017 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2017,
  • [23] Anomaly detection in big data from UWB radars
    Wang, Wei
    Zhou, Xin
    Zhang, Baoju
    Mu, Jiasong
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (14) : 2469 - 2475
  • [24] Multi-level anomaly detection: Relevance of big data analytics in networks
    Sait, Saad Y.
    Bhandari, Akshay
    Khare, Shreya
    James, Cyriac
    Murthy, Hema A.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2015, 40 (06): : 1737 - 1767
  • [25] Multi-level anomaly detection: Relevance of big data analytics in networks
    Sait S.
    Bhandari A.
    Khare S.
    James C.
    Murthy H.
    Sadhana, 2015, 40 (6) : 1737 - 1767
  • [26] Big Data Analytics for Network Anomaly Detection from Netflow Data
    Terzi, Duygu Sinanc
    Terzi, Ramazan
    Sagiroglu, Seref
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 592 - 597
  • [27] Time-frequency analysis and autoencoder approach for network traffic anomaly detection
    Purohit, Ruchira
    Kumar, Satish
    Sayyad, Sameer
    Kotecha, Ketan
    METHODSX, 2025, 14
  • [28] Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data
    Lutz, Marc-Alexander
    Vogt, Stephan
    Berkhout, Volker
    Faulstich, Stefan
    Dienst, Steffen
    Steinmetz, Urs
    Gueck, Christian
    Ortega, Andres
    ENERGIES, 2020, 13 (05)
  • [30] Non-Parametric Stochastic Autoencoder Model for Anomaly Detection
    Alampay, Raphael
    Abu, Patricia Angela
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 948 - 959