Comparison of the Statistical and Autoencoder Approach for Anomaly Detection in Big Data

被引:0
|
作者
Mali, Barasha [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Elect & Instrumentat Engn, Longowal, Sangrur, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND PRACTICES, IBDAP | 2024年
关键词
anomaly; big data; statistical techniques; machine learning; autoencoders;
D O I
10.1109/IBDAP62940.2024.10689688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper compares two anomaly detection methods, comparing the Z-score statistical technique with autoencoders for big datasets, which are crucial for industries like manufacturing, energy, and transportation to maintain smooth operations and avoid costly disruptions. Autoencoders outperformed Z-score statistical technique in anomaly detection on big datasets, achieving higher precision (0.94), F1-score (0.97), and recall (1.00) compared to Z-score statistical technique. This highlights autoencoders' superior ability to accurately identify anomalies, making them more effective for robust anomaly detection in complex data environments.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 50 条
  • [1] Statistical wavelet-based anomaly detection in big data with compressive sensing
    Wang, Wei
    Lu, Dunqiang
    Zhou, Xin
    Zhang, Baoju
    Mu, Jiasong
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2013,
  • [2] Statistical wavelet-based anomaly detection in big data with compressive sensing
    Wei Wang
    Dunqiang Lu
    Xin Zhou
    Baoju Zhang
    Jiasong Mu
    EURASIP Journal on Wireless Communications and Networking, 2013
  • [3] KMDT: A Hybrid Cluster Approach for Anomaly Detection Using Big Data
    Thakur, Santosh
    Dharavath, Ramesh
    INFORMATION AND DECISION SCIENCES, 2018, 701 : 169 - 176
  • [4] A Statistical Technique for Online Anomaly Detection for Big Data Streams in Cloud Collaborative Environment
    Smrithy, G. S.
    Balakrishnan, Ramadoss
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2016, : 108 - 111
  • [5] Anomaly Detection Guidelines for Data Streams in Big Data
    Rana, Annie Ibrahim
    Estrada, Giovani
    Sole, Marc
    Muntes, Victor
    2016 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2016), 2016, : 94 - 98
  • [6] Big Data Based Bridge Anomaly Detection and Situational Awareness
    Yuan, Guowen
    Zhang, Caixia
    Hu, Shaolin
    Guo, Jing
    Wang, Xiangdong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3864 - 3868
  • [7] Small Vehicle Damage Detection with Acceleration Spectrograms: An Autoencoder-Based Anomaly Detection Approach
    Khan, Sara
    Faria, Bruno
    Ferreira, Andre
    SMART CITIES, GREEN TECHNOLOGIES, AND INTELLIGENT TRANSPORT SYSTEMS, SMARTGREENS 2023, VEHITS 2023, 2025, 1989 : 80 - 97
  • [8] Fuzzy CNN Autoencoder for Unsupervised Anomaly Detection in Log Data
    Gorokhov, Oleg
    Petrovskiy, Mikhail
    Mashechkin, Igor
    Kazachuk, Maria
    MATHEMATICS, 2023, 11 (18)
  • [9] Anomaly Detection for Big Data Security: A Benchmark
    Es-Samaali, Hamza H.
    Outchakoucht, Aissam A.
    Benhadou, Siham S.
    Mounnan, Oussama O.
    Abou El Kalam, Anas A.
    2021 THE 3RD INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND TECHNOLOGY, BDET 2021, 2021, : 35 - 39
  • [10] Big Data Analytics for Anomaly Detection in Blockchain
    Ozbilen, Mahmut Lutfullah
    Ozcan, Elif
    Keles, Mustafa Berk
    Zeybel, Merve
    Dervisoglu, Havanur
    Dogan, Aslinur
    Haklidir, Mehmet
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,