Chromosome localisation and segmentation in fluorescence microscopy images

被引:0
|
作者
Schabat, Simon [1 ,2 ]
Colicchio, Bruno [1 ]
Courbot, Jean-Baptiste [1 ]
Dieterlen, Alain [1 ]
M'Kacher, Radhia [2 ]
机构
[1] Univ Haute Alsace, IRIMAS, UR 7499, Mulhouse, France
[2] Cell Environm, Evry, France
关键词
image segmentation; fluorescence microscopy; chromosome identification; ABERRATIONS; AUTOMATION; TELOMERE; FISH;
D O I
10.23919/EUSIPCO63174.2024.10715369
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Segmenting chromosomes in fluorescence microscopy images is essential step for the precise definition of chromosomes allowing the robust detection of chromosome aberrations. Classical segmentation methods like thresholding and region growing methods have some limitations, especially when dealing with complex chromosome structures and the problem of overlapping and touching chromosomes. Recent advances in machine learning, particularly deep learning, offer promising solutions to these challenges. In this study, we propose an innovative pipeline that combines YOLO for initial chromosome detection and U-Net for precise segmentation, even in cases of overlapping or touching chromosomes. Our experiments, conducted on diverse datasets, including those containing challenging scenarios, showcase the efficacy of our approach. The U-Net architecture delivers high accuracy, recall, specificity, F1-score, and IoU metrics. The integration of YOLO and U-Net yields promising outcomes, achieving a precision of 90.46%, a recall of 97.44%, and an F1-score of 93.72% on a test dataset.
引用
收藏
页码:491 / 495
页数:5
相关论文
共 50 条
  • [31] Benchmarking robustness of deep neural networks in semantic segmentation of fluorescence microscopy images
    Zhong, Liqun
    Li, Lingrui
    Yang, Ge
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [32] Background segmentation in microscopy images
    Charles, J. J.
    Kuncheva, L. I.
    Wells, B.
    Lim, I. S.
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 139 - 145
  • [33] Automatic Single-Cell Segmentation and Tracking of Bacterial Cells in Fluorescence Microscopy Images
    Liluashvili, Vaja
    Bergeest, Jan-Philip
    Harder, Nathalie
    Ziesack, Marika
    Mutlu, Alper
    Bischofs, Ilka B.
    Rohr, Karl
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 239 - 244
  • [34] SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES USING THREE DIMENSIONAL ACTIVE CONTOURS WITH INHOMOGENEITY CORRECTION
    Lee, Soonam
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 709 - 713
  • [35] Nuclei Segmentation of Fluorescence Microscopy Images Using Three Dimensional Convolutional Neural Networks
    Ho, David Joon
    Fu, Chichen
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 834 - 842
  • [36] Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding
    Fang, Yating
    Zhong, Baojiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16259 - 16278
  • [37] Segmentation of Intracellular Structures in Fluorescence Microscopy Images by Fusing Low-Level Features
    Guo, Yuanhao
    Huang, Jiaxing
    Zhou, Yanfeng
    Luo, Yaoru
    Li, Wenjing
    Yang, Ge
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 386 - 397
  • [38] Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images
    Truong X. Tran
    Marc L. Pusey
    Ramazan S. Aygun
    Journal of Fluorescence, 2020, 30 : 637 - 656
  • [39] Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images
    Tran, Truong X.
    Pusey, Marc L.
    Aygun, Ramazan S.
    JOURNAL OF FLUORESCENCE, 2020, 30 (03) : 637 - 656
  • [40] Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters
    Mueller, Jenna L.
    Harmany, Zachary T.
    Mito, Jeffrey K.
    Kennedy, Stephanie A.
    Kim, Yongbaek
    Dodd, Leslie
    Geradts, Joseph
    Kirsch, David G.
    Willett, Rebecca M.
    Brown, J. Quincy
    Ramanujam, Nimmi
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XI, 2013, 8587