Enhanced Segmentation in Abdominal CT Images: Leveraging Hybrid CNN-Transformer Architectures and Compound Loss Function

被引:1
作者
Piri, Fatemeh [1 ]
Karimi, Nader [1 ]
Samavi, Shadrokh [2 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Seattle Univ, Dept Comp Sci, Seattle, WA 98122 USA
来源
2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024 | 2024年
关键词
Semantic Segmentation; Transformer; HiFormer; Abdominal Segmentation; Medical Image;
D O I
10.1109/AIIoT61789.2024.10579036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate segmentation of abdominal organs in CT scans is essential for medical diagnosis and treatment. This paper addresses limitations in current methods by proposing an enhanced HiFormer model for improved segmentation accuracy. We introduce a novel hybrid architecture that combines the strengths of convolutional neural networks (CNNs) and transformers. This model incorporates Cross-covariance image Transformer blocks within the encoder, allowing for efficient spatial information processing. Additionally, a compound DiceTopK loss function optimizes training for better handling organ size variations. This approach effectively addresses the challenges of organ size variability and robustness, surpassing baseline models. Evaluations on the Synapse multi-organ dataset demonstrate significant improvements, achieving a Dice score of 81.15. The proposed method holds promise for enhancing the clinical applications of medical image analysis.
引用
收藏
页码:0363 / 0369
页数:7
相关论文
共 50 条
[41]   SwinUNeLCsT: Global-local spatial representation learning with hybrid CNN-transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation [J].
Tan, Zhuoyi ;
Madzin, Hizmawati ;
Norafida, Bahari ;
Rahmat, Rahmita Wirza O. K. ;
Khalid, Fatimah ;
Sulaiman, Puteri Suhaiza .
JOURNAL OF KING SAUD UNIVERSITY COMPUTER AND INFORMATION SCIENCES, 2024, 36 (04)
[42]   Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images [J].
Xia, Kaijian ;
Yin, Hongsheng ;
Qian, Pengjiang ;
Jiang, Yizhang ;
Wang, Shuihua .
IEEE ACCESS, 2019, 7 :96349-96358
[43]   E-TransConvNet: An enhanced transformer and convolutional network for medical image segmentation from ultrasound and CT images [J].
Atabansi, Chukwuemeka Clinton ;
Nie, Jing ;
Huang, Jiachen ;
Feng, Yujie ;
Liu, Haijun ;
Xie, Jin ;
Zhou, Xichuan .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 285
[44]   HCT-Unet: multi-target medical image segmentation via a hybrid CNN-transformer Unet incorporating multi-axis gated multi-layer perceptron [J].
Fan, Yazhuo ;
Song, Jianhua ;
Yuan, Lei ;
Jia, Yunlin .
VISUAL COMPUTER, 2025, 41 (05) :3457-3472
[45]   SRENet: a spatiotemporal relationship-enhanced 2D-CNN-based framework for staging and segmentation of kidney cancer using CT images [J].
Liang, Shuang ;
Gu, Yu .
APPLIED INTELLIGENCE, 2023, 53 (13) :17061-17073
[46]   SRENet: a spatiotemporal relationship-enhanced 2D-CNN-based framework for staging and segmentation of kidney cancer using CT images [J].
Shuang Liang ;
Yu Gu .
Applied Intelligence, 2023, 53 :17061-17073
[47]   Emb-trattunet: a novel edge loss function and transformer-CNN architecture for multi-classes pneumonia infection segmentation in low annotation regimes [J].
Fares Bougourzi ;
Fadi Dornaika ;
Amir Nakib ;
Abdelmalik Taleb-Ahmed .
Artificial Intelligence Review, 57
[48]   Emb-trattunet: a novel edge loss function and transformer-CNN architecture for multi-classes pneumonia infection segmentation in low annotation regimes [J].
Bougourzi, Fares ;
Dornaika, Fadi ;
Nakib, Amir ;
Taleb-Ahmed, Abdelmalik .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
[49]   Automatic Segmentation of Liver Tumor from Multi-phase Contrast-Enhanced CT Images Using Cross-Phase Fusion Transformer [J].
Zhang, Wencong ;
Tao, Yuxi ;
Liang, Wei ;
Li, Junjie ;
Chen, Yingjia ;
Song, Tengfei ;
Ma, Xiangyuan ;
Zhang, Yaqin .
12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 1, APCMBE 2023, 2024, 103 :121-130
[50]   ZOZI-Seg: A transformer and UNet cascade network with Zoom-Out and Zoom-In scheme for aortic dissection segmentation in enhanced CT images [J].
Jung J.-H. ;
Oh H.M. ;
Jeong G.-J. ;
Kim T.-W. ;
Koo H.J. ;
Lee J.-G. ;
Yang D.H. .
Computers in Biology and Medicine, 2024, 175