Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data

被引:1
|
作者
Razavi, Mohammad Amin [1 ]
Nejadhashemi, A. Pouyan [2 ]
Majidi, Babak [3 ]
Razavi, Hoda S. [2 ]
Kpodo, Josue [2 ,4 ]
Eeswaran, Rasu [2 ,5 ,6 ]
Ciampitti, Ignacio [6 ]
Prasad, P. V. Vara [7 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Tehran, Iran
[2] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
[3] Khatam Univ, Dept Comp Engn, Tehran, Iran
[4] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI USA
[5] Univ Jaffna, Fac Agr, Dept Agron, Kilinochchi, Sri Lanka
[6] Kansas State Univ, Dept Agron, Manhattan, KS USA
[7] Kansas State Univ, Feed Future Sustainable Intensificat Innovat Lab, Manhattan, KS USA
来源
基金
美国食品与农业研究所;
关键词
Crop yield prediction; Variational auto encoder; Pattern recognition on spatiotemporal and; physiographical variables; Synthetic tabular data generation; Ensemble learning; INTERPOLATION METHODS; CLIMATE-CHANGE; AGRICULTURE; MANAGEMENT; SYSTEMS;
D O I
10.1016/j.aiia.2024.11.005
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In this study, we employ advanced data-driven techniques to investigate the complex relationships between the yields of five major crops and various geographical and spatiotemporal features in Senegal. We analyze how these features influence crop yields by utilizing remotely sensed data. Our methodology incorporates clustering algorithms and correlation matrix analysis to identify significant patterns and dependencies, offering a comprehensive understanding of the factors affecting agricultural productivity in Senegal. To optimize the model's performance and identify the optimal hyperparameters, we implemented a comprehensive grid search across four distinct machine learning regressors: Random Forest, Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient-Boosting Machine (LightGBM). Each regressor offers unique functionalities, enhancing our exploration of potential model configurations. The top-performing models were selected based on evaluating multiple performance metrics, ensuring robust and accurate predictive capabilities. The results demonstrated that XGBoost and CatBoost perform better than the other two. We introduce synthetic crop data generated using a Variational Auto Encoder to address the challenges posed by limited agricultural datasets. By achieving high similarity scores with real-world data, our synthetic samples enhance model robustness, mitigate overfitting, and provide a viable solution for small dataset issues in agriculture. Our approach distinguishes itself by creating a flexible model applicable to various crops together. By integrating five crop datasets and generating high-quality synthetic data, we improve model performance, reduce overfitting, and enhance realism. Our findings provide crucial insights for productivity drivers in key cropping systems, enabling robust recommendations and strengthening the decision-making capabilities of policymakers and farmers in datascarce regions. (c) 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:99 / 114
页数:16
相关论文
共 50 条
  • [21] Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
    Joshua, S. Vinson
    Priyadharson, A. Selwin Mich
    Kannadasan, Raju
    Khan, Arfat Ahmad
    Lawanont, Worawat
    Khan, Faizan Ahmed
    Rehman, Ateeq Ur
    Ali, Muhammad Junaid
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5663 - 5679
  • [22] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177
  • [23] Agricultural Crop Yield Prediction for Indian Farmers Using Machine Learning
    Narawade, Vaibhav
    Chaudhari, Akash
    Mohammad, Muntazir Alam
    Dubey, Tanmay
    Jadhav, Bhumika
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 75 - 86
  • [24] Bitter Melon Crop Yield Prediction using Machine Learning Algorithm
    Villanueva, Marizel B.
    Salenga, Ma. Louella M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 1 - 6
  • [25] Enhancing residential heating load prediction with advanced machine learning and optimization techniques
    Mohebbi, Milad
    Afzal, Sadegh
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [26] Prediction Of Thyroid Disorders Using Advanced Machine Learning Techniques
    Duggal, Priyanka
    Shukla, Shipra
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 670 - 675
  • [27] Ensemble Machine Learning Techniques Using Computer Simulation Data for Wild Blueberry Yield Prediction
    Seireg, Hayam R.
    Omar, Yasser M. K.
    Abd El-Samie, Fathi E.
    El-Fishawy, Adel S.
    Elmahalawy, Ahmed
    IEEE ACCESS, 2022, 10 : 64671 - 64687
  • [28] Prediction of crop yield in India using machine learning and hybrid deep learning models
    Saravanan, Krithikha Sanju
    Bhagavathiappan, Velammal
    ACTA GEOPHYSICA, 2024, 72 (06) : 4613 - 4632
  • [29] Predictive Modeling of Crop Yield in Precision Agriculture Using Machine Learning Techniques
    Raj, G. Bhupal
    EswararaoBoddepalli
    Veena, C. H.
    Manjunatha
    Singla, Atul
    Dhanraj, JoshuvaArockia
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [30] Enhancing agriculture productivity with machine learning in crop yield optimization
    Bhoyar, Dinesh
    Jain, Sachin
    Kene, Jagdish D.
    Suryawanshi, Y. A.
    Patil, A. R. Bhagat
    Karale, Shivkumar J.
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (02) : 213 - 223