An Overview and Classification of Machine Learning Approaches for Radar Signal Deinterleaving

被引:0
|
作者
Lesieur, Louis [1 ,2 ]
Le Caillec, Jean-Marc [3 ]
Khenchaf, Ali [1 ]
Guardia, Vincent [2 ]
Toumi, Abdelmalek [1 ]
机构
[1] Inst Polytech Paris, ENSTA, Lab STICC, UMR CNRS 6285, F-29806 Brest, France
[2] Thales, F-29200 Brest, France
[3] IMT Atlantique, Lab STICC, UMR CNRS 6285, F-29285 Brest, France
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Receivers; Radar; Radio frequency; Indexes; Frequency modulation; Vectors; Taxonomy; Signal processing algorithms; Radar signal processing; Real-time systems; Electronic warfare; radar; deinterleaving; pulse sorting; machine learning; segmentation; PULSE STREAMS; IMPROVED ALGORITHM;
D O I
10.1109/ACCESS.2025.3539589
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electronic Warfare (EW) receivers are passive systems that are designed to detect and identify active radar emitters in the environment. The radar pulses emitted by multiple sources are received and must be deinterleaved, in other words, sorted according to the waveform to which they belong, i.e. according to their emitter. As radar signals are more complex and observations are denser, new Machine Learning (ML) approaches appear in the literature to enhance traditional Radar Signal Deinterleaving (RSD). In this paper, we propose an overview of the ML approaches to RSD. To this end, we identify some criteria to characterize a method: its used technique, underlying assumptions, exploited parameters, input characterization, and architectural pattern. First, the problem of RSD is detailed with its challenges and operational requirements. We then outline the methods of the literature inside a taxonomy based on the technique criterion: the first category includes PRI estimation methods including histogram-based methods, and ML techniques constitute three other categories: clustering, RNN, CNN. Finally, the other identified criteria are explained and discussed.
引用
收藏
页码:28008 / 28028
页数:21
相关论文
共 50 条
  • [1] Image Segmentation for Radar Signal Deinterleaving Using Deep Learning
    Nuhoglu, Mustafa Atahan
    Alp, Yasar Kemal
    Ulusoy, Mehmet Ege Can
    Cirpan, Hakan Ali
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (01) : 541 - 554
  • [2] Radar Signal Deinterleaving in Electronic Warfare Systems: A Combined Approach
    Nuhoglu, Mustafa Atahan
    Cirpan, Hakan Ali
    IEEE ACCESS, 2023, 11 : 142043 - 142061
  • [3] A Radar Signal Deinterleaving Method Based on Complex Network and Laplacian Graph Clustering
    Guo, Qiang
    Huang, Shuai
    Qi, Liangang
    Li, Daren
    Kaliuzhnyi, Mykola
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2580 - 2584
  • [4] An intelligent radar signal classification and deinterleaving method with unified residual recurrent neural network
    Al-Malahi, Abdulrahman
    Farhan, Abubaker
    Feng, HanCong
    Almaqtari, Omar
    Tang, Bin
    IET RADAR SONAR AND NAVIGATION, 2023, 17 (08) : 1259 - 1276
  • [5] Progress in Radar Emitter Signal Deinterleaving
    Sui J.
    Liu Z.
    Liu L.
    Li X.
    Journal of Radars, 2022, 11 (03) : 418 - 433
  • [6] Radar signal deinterleaving in open-set environments based variational autoencoder with probabilistic ladder structure
    Sun, Huibo
    Xie, Kai
    IET RADAR SONAR AND NAVIGATION, 2025, 19 (01)
  • [7] Discriminant Analysis for Radar Signal Classification
    Guo, Shanzeng
    Tracey, Hannah
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 3134 - 3148
  • [8] Improvements on deinterleaving of radar pulses in dynamically varying signal environments
    Gencol, Kenan
    Kara, Ali
    At, Nuray
    DIGITAL SIGNAL PROCESSING, 2017, 69 : 86 - 93
  • [9] A Machine Learning Based Vehicle Classification in Forward Scattering Radar
    KANONA, M. O. H. A. M. M. E. D. E. A.
    ALIAS, M. O. H. A. M. A. D. Y.
    HASSAN, M. O. H. A. M. E. D. K. H. A. L. A. F. A. L. L. A.
    MOHAMED, K. H. A. L. I. D. S.
    KHAIRI, M. U. T. A. Z. H. H.
    HAMDAN, M. O. S. A. B.
    HAMDALLA, Y. A. S. S. I. N. A.
    OSMAN, O. M. N. I. A. M.
    AHMED, A. H. M. E. D. M. O.
    IEEE ACCESS, 2022, 10 : 64688 - 64700
  • [10] Radar signal clustering and deinterleaving by a neural network
    Shyu, HC
    Chang, CC
    Lee, YJ
    Lee, CH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (05) : 903 - 911