Unity-Based Autonomous Driving Environment: A Platform for Validating Reinforcement Learning Agents

被引:0
|
作者
Gonzalez-Santocildes, Asier [1 ]
Vazquez, Juan-Ignacio [1 ]
机构
[1] Univ Deusto, Fac Engn, Avda Univ 24, Bilbao 48007, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, HAIS 2024 | 2025年 / 14858卷
关键词
Artificial Intelligence; Reinforcement Learning; Development of Intelligent Environments; Autonomous Driving;
D O I
10.1007/978-3-031-74186-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our aim in this research is to develop from scratch a unique racing environment in Unity with the goal of implementing and validating various reinforcement learning algorithms. Once the environment is designed, research efforts will be focused on exploring solutions through different RL (Reinforcement Learning) algorithms by modifying rewards, behaviors, and algorithms. To facilitate the implementation of a broader range of algorithms, a Wrapper will be created to allow testing of algorithms using the Stable Baselines 3 library. Additionally, the research will explore the application of different reinforcement learning techniques, such as imitation learning or curriculum learning. After achieving promising results with training a single agent, the research will explore the possibility of training multiple agents simultaneously in the environment to observe how agents learn to interact with each other. Finally, an instructional application will be developed to consolidate the knowledge generated by the various algorithms, enabling users to visually observe the agents' learning progress. In this application, each algorithm will be represented by a car, allowing users to clearly see the performance of different algorithms in races and laps around the track, highlighting their strengths and weaknesses. In summary, the entire research aims to create an instructive and interactive application where the majority of reinforcement learning algorithms can be visually validated in an environment specifically created for the research.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [31] Improved Reinforcement Learning through Imitation Learning Pretraining Towards Image-based Autonomous Driving
    Wang, Tianqi
    Chang, Dong Eui
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 1306 - 1310
  • [32] Learning Personalized Discretionary Lane-Change Initiation for Fully Autonomous Driving Based on Reinforcement Learning
    Liu, Zhuoxi
    Wang, Zheng
    Yang, Bo
    Nakano, Kimihiko
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 457 - 463
  • [33] Vision-Based Autonomous Driving: A Hierarchical Reinforcement Learning Approach
    Wang, Jiao
    Sun, Haoyi
    Zhu, Can
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 11213 - 11226
  • [34] Autonomous Driving in Roundabout Maneuvers Using Reinforcement Learning with Q-Learning
    Garcia Cuenca, Laura
    Puertas, Enrique
    Fernandez Andres, Javier
    Aliane, Nourdine
    ELECTRONICS, 2019, 8 (12)
  • [35] A driving profile recommender system for autonomous driving using sensor data and reinforcement learning
    Chronis, Christos
    Sardianos, Christos
    Varlamis, Iraklis
    Michail, Dimitrios
    Tserpes, Konstantinos
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 33 - 38
  • [36] Susceptibility of Autonomous Driving Agents to Learning-Based Action-Space Attacks
    Wu, Yuting
    Lou, Xin
    Zhou, Pengfei
    Tan, Rui
    Kalbarczyk, Zbigniew T.
    Iyer, Ravishankar K.
    2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W, 2023, : 76 - 83
  • [37] Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving
    Wang, Yunpeng
    Zheng, Kunxian
    Tian, Daxin
    Duan, Xuting
    Zhou, Jianshan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (05) : 673 - 686
  • [38] Learning autonomous race driving with action mapping reinforcement learning
    Wang, Yuanda
    Yuan, Xin
    Sun, Changyin
    ISA TRANSACTIONS, 2024, 150 : 1 - 14
  • [39] Augmenting Reinforcement Learning With Transformer-Based Scene Representation Learning for Decision-Making of Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Mo, Xiaoyu
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4405 - 4421
  • [40] RLAD: Reinforcement Learning From Pixels for Autonomous Driving in Urban Environments
    Coelho, Daniel
    Oliveira, Miguel
    Santos, Vitor
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) : 7427 - 7435