Unity-Based Autonomous Driving Environment: A Platform for Validating Reinforcement Learning Agents

被引:0
|
作者
Gonzalez-Santocildes, Asier [1 ]
Vazquez, Juan-Ignacio [1 ]
机构
[1] Univ Deusto, Fac Engn, Avda Univ 24, Bilbao 48007, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, HAIS 2024 | 2025年 / 14858卷
关键词
Artificial Intelligence; Reinforcement Learning; Development of Intelligent Environments; Autonomous Driving;
D O I
10.1007/978-3-031-74186-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our aim in this research is to develop from scratch a unique racing environment in Unity with the goal of implementing and validating various reinforcement learning algorithms. Once the environment is designed, research efforts will be focused on exploring solutions through different RL (Reinforcement Learning) algorithms by modifying rewards, behaviors, and algorithms. To facilitate the implementation of a broader range of algorithms, a Wrapper will be created to allow testing of algorithms using the Stable Baselines 3 library. Additionally, the research will explore the application of different reinforcement learning techniques, such as imitation learning or curriculum learning. After achieving promising results with training a single agent, the research will explore the possibility of training multiple agents simultaneously in the environment to observe how agents learn to interact with each other. Finally, an instructional application will be developed to consolidate the knowledge generated by the various algorithms, enabling users to visually observe the agents' learning progress. In this application, each algorithm will be represented by a car, allowing users to clearly see the performance of different algorithms in races and laps around the track, highlighting their strengths and weaknesses. In summary, the entire research aims to create an instructive and interactive application where the majority of reinforcement learning algorithms can be visually validated in an environment specifically created for the research.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [21] Deep Reinforcement Learning Based on the Hindsight Experience Replay for Autonomous Driving of Mobile Robot
    Park M.
    Hong J.S.
    Kwon N.K.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (11): : 1006 - 1012
  • [22] Recent advances in reinforcement learning-based autonomous driving behavior planning: A survey
    Wu, Jingda
    Huang, Chao
    Huang, Hailong
    Lv, Chen
    Wang, Yuntong
    Wang, Fei-Yue
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 164
  • [23] Safety-based Reinforcement Learning Longitudinal Decision for Autonomous Driving in Crosswalk Scenarios
    Xiong, Fangzhou
    Ren, Dongchun
    Fan, Mingyu
    Ding, Shuguang
    Liu, Zhiyong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] Random Prior Network for Autonomous Driving Decision-Making Based on Reinforcement Learning
    Qiang, Yuchuan
    Wang, Xiaolan
    Wang, Yansong
    Zhang, Weiwei
    Xu, Jianxun
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (04)
  • [25] A Decision Control Method for Autonomous Driving Based on Multi-Task Reinforcement Learning
    Cai, Yingfeng
    Yang, Shaoqing
    Wang, Hai
    Teng, Chenglong
    Chen, Long
    IEEE ACCESS, 2021, 9 (09): : 154553 - 154562
  • [26] A Reinforcement Learning Benchmark for Autonomous Driving in General Urban Scenarios
    Jiang, Yuxuan
    Zhan, Guojian
    Lan, Zhiqian
    Liu, Chang
    Cheng, Bo
    Li, Shengbo Eben
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4335 - 4345
  • [27] Adversarial Testing with Reinforcement Learning: A Case Study on Autonomous Driving
    Doreste, Andrea
    Biagiola, Matteo
    Tonella, Paolo
    2024 IEEE CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION, ICST 2024, 2024, : 293 - 304
  • [28] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [29] Identify, Estimate and Bound the Uncertainty of Reinforcement Learning for Autonomous Driving
    Zhou, Weitao
    Cao, Zhong
    Deng, Nanshan
    Jiang, Kun
    Yang, Diange
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 7932 - 7942
  • [30] A Review of Reward Functions for Reinforcement Learning in the context of Autonomous Driving
    Abouelazm, Ahmed
    Michel, Jonas
    Zoellner, Marius
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 156 - 163