Fluctuation-induced extensive molecular transport via modulation of interaction strength

被引:0
作者
Eun, Changsun [1 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Chem, Yongin 17035, South Korea
基金
新加坡国家研究基金会;
关键词
ION CHANNELS; WATER; PROTEINS;
D O I
10.1039/d4cp03711a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In our previous work, we studied the thermodynamics of two cases of intercompartmental transport through a carbon nanotube: one involving water molecules and the other involving nonpolar molecules. Free energy calculations indicate that transporting water molecules from one compartment to another via a narrow channel is impossible, whereas for nonpolar molecules, only approximately half can be transported. Therefore, the interaction strength between transported molecules significantly affects molecular transport. In this study, we examined the effect of interaction strength on molecular transport both kinetically and thermodynamically via simple models and molecular simulation methods. The results revealed that, depending on the interaction strength, the transport behavior can be categorized into three regimes: water-like, nonpolar-like, and transition regimes. Interestingly, the molecular fluctuations in the transition regime are so large that a significant number of molecules are transported between the compartments in an oscillatory manner, exceeding the transport of half of the molecules in the nonpolar-like regime. Thus, to induce molecular transport driven by large fluctuations, the interaction strength should remain within a moderate range. Moreover, potential of mean force (PMF) analysis supports this large fluctuating behavior, as the PMF profile exhibits a flat region that allows significant variation with no free energy cost. We elucidate the role of interaction strength in molecular transport, as well as the deep connection between molecular fluctuations and molecular transport.
引用
收藏
页码:3634 / 3649
页数:16
相关论文
共 36 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Hydrophilic behavior of graphene and graphene-based materials [J].
Accordino, Sebastian R. ;
Manuel Montes de Oca, Joan ;
Rodriguez Fris, J. Ariel ;
Appignanesi, Gustavo A. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (15)
[3]   Potential of mean force calculations of ligand binding to ion channels from Jarzynski's equality and umbrella sampling [J].
Bastug, Turgut ;
Chen, Po-Chia ;
Patra, Swarna M. ;
Kuyucak, Serdar .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (15)
[4]   Dewetting and Hydrophobic Interaction in Physical and Biological Systems [J].
Berne, Bruce J. ;
Weeks, John D. ;
Zhou, Ruhong .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2009, 60 :85-103
[5]  
Berthelot D., 1898, COMPT RENDUS, V126
[6]   Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide [J].
Bienert, Gerd P. ;
Chaumont, Francois .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2014, 1840 (05) :1596-1604
[7]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[8]   ION CHANNELS AND THE SIGNAL-TRANSDUCTION PATHWAYS IN THE REGULATION OF GROWTH-HORMONE SECRETION [J].
CHEN, C ;
VINCENT, JD ;
CLARKE, IJ .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 1994, 5 (06) :227-233
[9]   The dewetting transition and the hydrophobic effect [J].
Choudhury, Niharendu ;
Pettitt, B. Montgomery .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (15) :4847-4852
[10]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197