Blacklight sintering of BaZrO3-based proton conductors

被引:1
作者
Ebert, Julian N. [1 ,2 ]
Jennings, Dylan [1 ,2 ,3 ]
Guillon, Olivier [2 ]
Rheinheimer, Wolfgang [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Fertigungstechnol keram Bauteile IFKB, D-70569 Stuttgart, Germany
[2] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[3] Ctr Microscopy & Spect Electrons Mat Sci & Technol, D-52425 Julich, Germany
关键词
Blacklight sintering; Laser treatment; Ionic conductors; Microstructure; Grain boundary segregation; DOPED BARIUM ZIRCONATE; GRAIN-BOUNDARIES; BAZR0.8Y0.2O3-DELTA; CONDUCTIVITY; MICROSTRUCTURE; ELECTROLYTE; CERAMICS; TRANSPORT; BEHAVIOR;
D O I
10.1016/j.scriptamat.2024.116414
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Acceptor-doped BaZrO3, a ceramic proton conductor, is well researched for use in solid oxide fuel cells due to its proton conductivity and chemical stability. A major drawback of the material is the difficulty of sintering as it requires high sintering temperatures and long heating times (> 1600 degrees C, 24 h). An emerging sintering technology to mitigate this challenge is blacklight sintering, which uses a high-powered blue or UV light source to heat ceramics extremely fast leading to short sintering times and reduced energy demand. In this work, BaZr0.8Y0.2O3-delta (BZY20) and BaZr0.8Y0.1Sc0.1O3-delta (BZY10Sc10) were blacklight-sintered with a high-power blue laser in under four minutes. Even though the resulting samples have a gradient from large to small grains and structurally disordered grain boundaries, the proton conductivity is comparable to conventionally sintered samples. Hence, blacklight sintering is a promising technology with the potential to sinter BaZrO3 much faster, while saving energy.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Effect of dopant nature on structures and lattice dynamics of proton-conducting BaZrO3 [J].
Sahraoui, D. Zeudmi ;
Mineva, T. .
SOLID STATE IONICS, 2013, 253 :195-200
[22]   Hydrogen separation properties and characterization of BaZr0.9-xPrxIn0.1O3-δ proton conductors [J].
Yang, Chunli ;
Yao, Wei ;
Li, Jun ;
Wang, Lei ;
Wang, Kai ;
Liang, Yanru ;
Yun, Sining .
MATERIALS TODAY COMMUNICATIONS, 2025, 45
[23]   Dense and translucent BaZrxCe0.8-xY0.2O3-δ (x=0.5, 0.6, 0.7) proton conductors prepared by spark plasma sintering [J].
Bu, Junfu ;
Jonsson, Par Goran ;
Zhao, Zhe .
SCRIPTA MATERIALIA, 2015, 107 :145-148
[24]   Sintering of BaZrO3 and SrZrO3 perovskites: Role of substitutions by yttrium or ytterbium [J].
Bendjeriou-Sedjerari, B. ;
Loricourt, J. ;
Goeuriot, D. ;
Goeuriot, P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (21) :6175-6183
[25]   Electrical properties of BaCeO3-based composite protonic conductors [J].
Lacz, Agnieszka ;
Grzesik, Katarzyna ;
Pasierb, Pawel .
JOURNAL OF POWER SOURCES, 2015, 279 :80-87
[26]   The BaCeO3-based composite protonic conductors prepared by Spark Plasma Sintering (SPS) and free-sintering methods [J].
Sari, Sherly Novia ;
Nieroda, Pawel ;
Pasierb, Pawel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (76) :29748-29758
[27]   A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells [J].
Loureiro, Francisco J. A. ;
Nasani, Narendar ;
Reddy, G. Srinivas ;
Munirathnam, N. R. ;
Fagg, Duncan P. .
JOURNAL OF POWER SOURCES, 2019, 438
[28]   Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials [J].
Medvedev, D. ;
Lyagaeva, J. ;
Plaksin, S. ;
Demin, A. ;
Tsiakaras, P. .
JOURNAL OF POWER SOURCES, 2015, 273 :716-723
[29]   Origin of Space Charge in Grain Boundaries of Proton-Conducting BaZrO3 [J].
Helgee, E. E. ;
Lindman, A. ;
Wahnstrom, G. .
FUEL CELLS, 2013, 13 (01) :19-28
[30]   A more efficient anode microstructure for SOFCs based on proton conductors [J].
Rainwater, Ben H. ;
Liu, Mingfei ;
Liu, Meilin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) :18342-18348