QUANTUM LIMITS OF PERTURBED SUB-RIEMANNIAN CONTACT LAPLACIANS IN DIMENSION 3

被引:0
|
作者
Arnaiz, Victor [1 ]
Riviere, Gabriel [1 ,2 ]
机构
[1] Nantes Univ, Lab Math Jean Leray, UMR CNRS 6629, 2 Rue Houssiniere, F-44322 Nantes 03, France
[2] Inst Univ France, Paris, France
关键词
Hypo elliptic operators; semiclassical analysis; contact flows; SCHRODINGER-EQUATION; OBSERVABILITY;
D O I
10.5802/jep.269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- On the unit tangent bundle of a compact Riemannian surface, we consider a natural sub-Riemannian Laplacian associated with the canonical contact structure. In the large eigenvalue limit, we study the escape of mass at infinity in the cotangent space of eigenfunctions for hypo elliptic selfadjoint perturbations of this operator. Using semiclassical methods, we show that, in this sub elliptic regime, eigenfunctions concentrate on certain quantized level sets along the geodesic flow direction and that they verify invariance properties involving both the geodesic vector field and the perturbation term.
引用
收藏
页数:49
相关论文
共 50 条