QUANTUM LIMITS OF PERTURBED SUB-RIEMANNIAN CONTACT LAPLACIANS IN DIMENSION 3

被引:0
|
作者
Arnaiz, Victor [1 ]
Riviere, Gabriel [1 ,2 ]
机构
[1] Nantes Univ, Lab Math Jean Leray, UMR CNRS 6629, 2 Rue Houssiniere, F-44322 Nantes 03, France
[2] Inst Univ France, Paris, France
关键词
Hypo elliptic operators; semiclassical analysis; contact flows; SCHRODINGER-EQUATION; OBSERVABILITY;
D O I
10.5802/jep.269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- On the unit tangent bundle of a compact Riemannian surface, we consider a natural sub-Riemannian Laplacian associated with the canonical contact structure. In the large eigenvalue limit, we study the escape of mass at infinity in the cotangent space of eigenfunctions for hypo elliptic selfadjoint perturbations of this operator. Using semiclassical methods, we show that, in this sub elliptic regime, eigenfunctions concentrate on certain quantized level sets along the geodesic flow direction and that they verify invariance properties involving both the geodesic vector field and the perturbation term.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] SPECTRAL ASYMPTOTICS FOR SUB-RIEMANNIAN LAPLACIANS, I: QUANTUM ERGODICITY AND QUANTUM LIMITS IN THE 3-DIMENSIONAL CONTACT CASE
    de Verdiere, Yves Colin
    Hillairet, Luc
    Trelat, Emmanuel
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (01) : 109 - 174
  • [2] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    Potential Analysis, 2016, 44 : 811 - 837
  • [3] Sub-Laplacians on Sub-Riemannian Manifolds
    Gordina, Maria
    Laetsch, Thomas
    POTENTIAL ANALYSIS, 2016, 44 (04) : 811 - 837
  • [4] Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry
    Boscain, Ugo
    Neel, Robert
    Rizzi, Luca
    ADVANCES IN MATHEMATICS, 2017, 314 : 124 - 184
  • [5] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [6] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [7] ON CONTACT SUB-RIEMANNIAN SYMMETRICAL SPACES
    FALBEL, E
    GORODSKI, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1995, 28 (05): : 571 - 589
  • [8] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [9] On sub-Riemannian geodesic curvature in dimension three
    Barilari, Davide
    Kohli, Mathieu
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (03) : 577 - 599
  • [10] A parallelism for contact conformal sub-Riemannian geometry
    Falbel, E
    Veloso, JM
    FORUM MATHEMATICUM, 1998, 10 (04) : 453 - 478