Conductive, self-healing and adhesive cellulose nanofibers-based hydrogels as wearable strain sensors and supercapacitors

被引:1
|
作者
Zhuang, Jie [1 ,3 ]
Zhang, Xuebing [1 ,3 ]
Jin, Wanhui [2 ]
Mei, Fan [2 ]
Xu, Yuqi [2 ]
He, Li [2 ]
Tan, Sirui [1 ]
Cai, Guangming [3 ]
Cheng, Deshan [1 ,3 ]
Wang, Xin [4 ]
机构
[1] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
[2] Hubei Fiber Inspect Bur, Wuhan 430000, Peoples R China
[3] Wuhan Text Univ, Sch Text Sci & Engn, Wuhan 430200, Peoples R China
[4] RMIT Univ, Sch Fash & Text, Brunswick 3056, Australia
关键词
Cellulose nanofibers; Conductive hydrogel; Wearable strain sensor; Supercapacitor;
D O I
10.1016/j.indcrop.2025.120547
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Conductive hydrogels show high potential for application in different areas including wearable electronic devices, human-computer interaction, electronic skin, and intelligent robots. Herein, a simple one-pot method was used to develop a conductive hydrogel by mixing cellulose nanofibers (CNF), polyvinyl alcohol (PVA)-borax and sodium chloride (NaCl) doped poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS). The CNF was introduced into PVA-borax gel system, obtaining a hydrogel with improved mechanical, self-healing, and adhesion properties via dynamic boron-ester bonding and multiple hydrogen bond crosslinking. The as- assembled strain sensor was highly sensitive (GF=3), when stretching quickly, it had a fast response time (170 ms) and wide strain sensing range (0-300 %). Moreover, the sensor accurately monitored joint movement and weak muscle throbbing in real time when attached to human skin. Furthermore, supercapacitors were assembled with hydrogel and carbon cloth electrodes, the hydrogel-based supercapacitor has an area specific capacitance of 23.57 mF/cm2 with a high cycle life of > 5000 cycles. This study offers guidance for constructing cellulose-based conductive hydrogel systems and promotes their application in flexible sensors and supercapacitors.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan-Polyoxometalate Complexes for Wearable Strain Sensor
    Wei, Xinran
    Ma, Ke
    Cheng, Yongbin
    Sun, Leyun
    Chen, Daijun
    Zhao, Xiaoli
    Lu, Hao
    Song, Botao
    Yang, Kewu
    Jia, Pengxiang
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (07) : 2541 - 2549
  • [22] Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion-contraction motion monitoring
    Zhang, Wenshuai
    Xu, Lingxiao
    Zhao, Meijin
    Ma, Yuning
    Zheng, Ting
    Shi, Lei
    SOFT MATTER, 2022, 18 (08) : 1644 - 1652
  • [23] Recent progress in conductive self-healing hydrogels for flexible sensors
    Qin, Tao
    Liao, Wenchao
    Yu, Li
    Zhu, Junhui
    Wu, Meng
    Peng, Qiongyao
    Han, Linbo
    Zeng, Hongbo
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2607 - 2634
  • [24] Self-healing strain sensors based on nanostructured supramolecular conductive elastomers
    Liu, Xuehui
    Lu, Canhui
    Wu, Xiaodong
    Zhang, Xinxing
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) : 9824 - 9832
  • [25] Cellulose nanocomposite tough hydrogels: synergistic self-healing, adhesive and strain-sensitive properties
    Badawi, Mohammed Nujud
    Agrawal, Namrata
    Kumar, Yogesh
    Khan, Mujeeb
    Hatshan, Mohammad Rafe
    Alayyaf, Abdulmajeed Abdullah
    Adil, Syed Farooq
    POLYMER INTERNATIONAL, 2024, 73 (09) : 748 - 760
  • [26] Self-healing and wearable conductive hydrogels with dynamic physically crosslinked structure
    Xiao Min Zhang
    Xiao-Li Yang
    Bin Wang
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 18952 - 18960
  • [27] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Hussain, Imtiaz
    Ma, Xiaofeng
    Wu, Linlin
    Luo, Zhenyang
    CELLULOSE, 2022, 29 (10) : 5725 - 5743
  • [28] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Imtiaz Hussain
    Xiaofeng Ma
    Linlin Wu
    Zhenyang Luo
    Cellulose, 2022, 29 : 5725 - 5743
  • [29] Self-healing and wearable conductive hydrogels with dynamic physically crosslinked structure
    Zhang, Xiao Min
    Yang, Xiao-Li
    Wang, Bin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (24) : 18952 - 18960
  • [30] Conductive, Self-Healing, Adhesive, and Antibacterial Hydrogels Based on Lignin/Cellulose for Rapid MRSA-Infected Wound Repairing
    Deng, Pengpeng
    Chen, Feixiang
    Zhang, Haodong
    Chen, Yun
    Zhou, Jinping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (44) : 52333 - 52345