Modeling Bottom Dissolved Oxygen on the East China Sea Shelf Using Interpretable Machine Learning

被引:1
作者
Zhang, Chengqing [1 ,2 ,3 ]
Meng, Qicheng [2 ,3 ]
Ma, Xiao [2 ,3 ]
Liu, Anqi [2 ,3 ,4 ]
Zhou, Feng [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Minist Nat Resources, Observat & Res Stn Yangtze River Delta Marine Ecos, Zhoushan 316022, Peoples R China
[4] Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
dissolved oxygen; hypoxia; interpretable machine learning; key factors; CHANGJIANG ESTUARY; RIVER ESTUARY; HYPOXIA; OCEAN; NUTRIENT; DECLINE; FIELDS; ZONES;
D O I
10.3390/jmse13020359
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Monitoring bottom dissolved oxygen (DO) is crucial for understanding hypoxia, a threat to marine ecosystems and fisheries. However, traditional observations are limited in spatiotemporal coverage, while numerical models consume tremendous computing resources. This study develops an interpretable machine learning framework to simulate the bottom DO distribution on the East China Sea (ECS) shelf and explore its potential driving mechanisms. By integrating remote sensing, in situ observations, and numerical model outputs, the framework generates high-resolution (4 km) DO estimates from 1998 to 2024. Validation against independent datasets confirms the improved accuracy and spatial resolution, with an RMSE below 1 mg/L. The results reveal a persistent decline in DO, strongly linked to rising sea surface temperature (SST), underscoring the role of surface warming in bottom water deoxygenation. Model interpretability further identifies the SST and bathymetry as key factors. This framework provides a robust tool for assessing bottom DO trends, hypoxia, and their ecological impacts, supporting future monitoring and management of the ECS shelf.
引用
收藏
页数:23
相关论文
共 67 条
[11]   Spreading dead zones and consequences for marine ecosystems [J].
Diaz, Robert J. ;
Rosenberg, Rutger .
SCIENCE, 2008, 321 (5891) :926-929
[12]  
Dong Y., 2024, J. Geophys. Res. Mach. Learn. Comput., V1
[13]   Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf [J].
Forrest, David R. ;
Hetland, Robert D. ;
DiMarco, Steven F. .
ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (04)
[14]   Multisource and Multitemporal Data Fusion in Remote Sensing A comprehensive review of the state of the art [J].
Ghamisi, Pedram ;
Rasti, Behnood ;
Yokoya, Naoto ;
Wang, Qunming ;
Hoefle, Bernhard ;
Bruzzone, Lorenzo ;
Bovolo, Francesca ;
Chi, Mingmin ;
Anders, Katharina ;
Gloaguen, Richard ;
Atkinson, Peter M. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (01) :6-39
[15]   A generalized machine learning approach for dissolved oxygen estimation at multiple spatiotemporal scales using remote sensing [J].
Guo, Hongwei ;
Huang, Jinhui Jeanne ;
Zhu, Xiaotong ;
Wang, Bo ;
Tian, Shang ;
Xu, Wang ;
Mai, Youquan .
ENVIRONMENTAL POLLUTION, 2021, 288
[16]   Editorial: Acidification and Hypoxia in Marginal Seas [J].
Guo, Xianghui ;
Bednarsek, Nina ;
Wang, Hongjie ;
Feely, Richard A. ;
Laurent, Arnaud .
FRONTIERS IN MARINE SCIENCE, 2022, 9
[17]   Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary? [J].
Guo, Xiaoyi ;
Xu, Bochao ;
Burnett, William C. ;
Wei, Qinsheng ;
Nan, Haiming ;
Zhao, Shibin ;
Charette, Matthew A. ;
Lian, Ergang ;
Chen, Guangquan ;
Yu, Zhigang .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 719
[18]   Seasonal nutrients variation, eutrophication pattern, and Chlorophyll a response adjacent to Guangdong coastal water, China [J].
He, Yingxian ;
Zhang, Peng ;
Xu, Fang ;
Zhao, Lirong ;
Zhang, Jibiao .
FRONTIERS IN MARINE SCIENCE, 2023, 10
[19]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21
[20]   Upper ocean O2 trends: 1958-2015 [J].
Ito, Takamitsu ;
Minobe, Shoshiro ;
Long, Matthew C. ;
Deutsch, Curtis .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (09) :4214-4223