Modeling Bottom Dissolved Oxygen on the East China Sea Shelf Using Interpretable Machine Learning

被引:1
作者
Zhang, Chengqing [1 ,2 ,3 ]
Meng, Qicheng [2 ,3 ]
Ma, Xiao [2 ,3 ]
Liu, Anqi [2 ,3 ,4 ]
Zhou, Feng [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Minist Nat Resources, Observat & Res Stn Yangtze River Delta Marine Ecos, Zhoushan 316022, Peoples R China
[4] Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
dissolved oxygen; hypoxia; interpretable machine learning; key factors; CHANGJIANG ESTUARY; RIVER ESTUARY; HYPOXIA; OCEAN; NUTRIENT; DECLINE; FIELDS; ZONES;
D O I
10.3390/jmse13020359
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Monitoring bottom dissolved oxygen (DO) is crucial for understanding hypoxia, a threat to marine ecosystems and fisheries. However, traditional observations are limited in spatiotemporal coverage, while numerical models consume tremendous computing resources. This study develops an interpretable machine learning framework to simulate the bottom DO distribution on the East China Sea (ECS) shelf and explore its potential driving mechanisms. By integrating remote sensing, in situ observations, and numerical model outputs, the framework generates high-resolution (4 km) DO estimates from 1998 to 2024. Validation against independent datasets confirms the improved accuracy and spatial resolution, with an RMSE below 1 mg/L. The results reveal a persistent decline in DO, strongly linked to rising sea surface temperature (SST), underscoring the role of surface warming in bottom water deoxygenation. Model interpretability further identifies the SST and bathymetry as key factors. This framework provides a robust tool for assessing bottom DO trends, hypoxia, and their ecological impacts, supporting future monitoring and management of the ECS shelf.
引用
收藏
页数:23
相关论文
共 67 条
[1]   Spatial modelling with Euclidean distance fields and machine learning [J].
Behrens, T. ;
Schmidt, K. ;
Rossel, R. A. Viscarra ;
Gries, P. ;
Scholten, T. ;
MacMillan, R. A. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2018, 69 (05) :757-770
[2]   Barriers and Bridges in Abating Coastal Eutrophication [J].
Boesch, Donald F. .
FRONTIERS IN MARINE SCIENCE, 2019, 6
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Declining oxygen in the global ocean and coastal waters [J].
Breitburg, Denise ;
Levin, Lisa A. ;
Oschlies, Andreas ;
Gregoire, Marilaure ;
Chavez, Francisco P. ;
Conley, Daniel J. ;
Garcon, Veronique ;
Gilbert, Denis ;
Gutierrez, Dimitri ;
Isensee, Kirsten ;
Jacinto, Gil S. ;
Limburg, Karin E. ;
Montes, Ivonne ;
Naqvi, S. W. A. ;
Pitcher, Grant C. ;
Rabalais, Nancy N. ;
Roman, Michael R. ;
Rose, Kenneth A. ;
Seibel, Brad A. ;
Telszewski, Maciej ;
Yasuhara, Moriaki ;
Zhang, Jing .
SCIENCE, 2018, 359 (6371) :46-+
[5]   Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea [J].
Cen, Haobin ;
Jiang, Jiahan ;
Han, Guoqing ;
Lin, Xiayan ;
Liu, Yu ;
Jia, Xiaoyan ;
Ji, Qiyan ;
Li, Bo .
REMOTE SENSING, 2022, 14 (21)
[6]   Impact of upwelling on phytoplankton blooms and hypoxia along the Chinese coast in the East China Sea [J].
Chen, Chung-Chi ;
Shiah, Fuh-Kwo ;
Gong, Gwo-Ching ;
Chen, Tzong-Yueh .
MARINE POLLUTION BULLETIN, 2021, 167
[7]   Monitoring the occurrence of seasonal low-oxygen events off the Changjiang Estuary through integration of remote sensing, buoy observations, and modeling [J].
Chen, Jianyu ;
Ni, Xiaobo ;
Liu, Mingliang ;
Chen, Jianfang ;
Mao, Zhihua ;
Jin, Haiyan ;
Pan, Delu .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (08) :5311-5322
[8]   First retrieval of 24-hourly 1-km-resolution gapless surface ozone (O3) from space in China using artificial intelligence: Diurnal variations and implications for air quality and phytotoxicity [J].
Cheng, Fan ;
Li, Zhanqing ;
Yang, Zeyu ;
Li, Ruohan ;
Wang, Dongdong ;
Jia, Aolin ;
Li, Ke ;
Zhao, Bin ;
Wang, Shuxiao ;
Yin, Dejia ;
Li, Shengyue ;
Xue, Wenhao ;
Cribb, Maureen ;
Wei, Jing .
REMOTE SENSING OF ENVIRONMENT, 2025, 316
[9]   Main factors dominating the development, formation and dissipation of hypoxia off the Changjiang Estuary (CE) and its adjacent waters, China [J].
Chi, Lianbao ;
Song, Xiuxian ;
Yuan, Yongquan ;
Wang, Wentao ;
Cao, Xihua ;
Wu, Zaixing ;
Yu, Zhiming .
ENVIRONMENTAL POLLUTION, 2020, 265
[10]   Origins of Low-Oxygen Bottom Water Influenced by Tide and ENSO on the Outer-Edge Shelf of East China Sea: Multi-Chemical Tracer Approaches [J].
Deng, Wenjie ;
Zhang, Jing ;
Zhu, Siteng Justin ;
Horikawa, Keiji ;
Endoh, Takahiro ;
Matsuno, Takeshi ;
Kondo, Yoshiko ;
Inoue, Mutsuo ;
Nagao, Seiya .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (07)