Weakly supervised object detection with interactive edge attentive collaboration

被引:0
作者
Gao, Wenlong [1 ]
Chen, Ying [1 ]
Peng, Yong [2 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
来源
2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC | 2022年
关键词
Object Detection; Weakly supervised Learning; Edge Feature; Image Processing;
D O I
10.1109/CCDC55256.2022.10033877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised object detectors based on image-level annotation tend to overfit in the discriminative regions while ignoring the integrity of the object. In this paper, a novel weakly supervised object detection network with the interactive edge attentive collaboration module is proposed to alleviate the local optimal problem, in which edge attention is extracted as an object unity supervision for the detection, and a collaborative loss is introduced to enable VGG16 feature map with global attentive ability. The module can be detached from the network in the test period, which ensures the high efficiency of the detector without introducing any additional inference cost. Extensive experiments are carried out on the PASCAL VOC 2007 and VOC 2012 datasets, which reach 52.3% mAP, 67.7% CorLoc and 49.1% mAP, 68.0% CorLoc respectively, outperforming state-of-the-arts.
引用
收藏
页码:1398 / 1403
页数:6
相关论文
共 26 条
  • [11] Liu B, 2019, P IEEE C COMP VIS PA
  • [12] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [13] Redmon J., 2015, PROC CVPR IEEE, DOI [DOI 10.1109/CVPR.2016.91, 10.1109/CVPR.2016.91]
  • [14] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [15] Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation
    Shen, Yunhang
    Ji, Rongrong
    Wang, Yan
    Wu, Yongjian
    Cao, Liujuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 697 - 707
  • [16] PCL: Proposal Cluster Learning for Weakly Supervised Object Detection
    Tang, Peng
    Wang, Xinggang
    Bai, Song
    Shen, Wei
    Bai, Xiang
    Liu, Wenyu
    Yuille, Alan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 176 - 191
  • [17] Multiple Instance Detection Network with Online Instance Classifier Refinement
    Tang, Peng
    Wang, Xinggang
    Bai, Xiang
    Liu, Wenyu
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3059 - 3067
  • [18] Adversarial Discriminative Domain Adaptation
    Tzeng, Eric
    Hoffman, Judy
    Saenko, Kate
    Darrell, Trevor
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2962 - 2971
  • [19] Selective Search for Object Recognition
    Uijlings, J. R. R.
    van de Sande, K. E. A.
    Gevers, T.
    Smeulders, A. W. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) : 154 - 171
  • [20] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection
    Wan, Fang
    Liu, Chang
    Ke, Wei
    Ji, Xiangyang
    Jiao, Jianbin
    Ye, Qixiang
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2194 - 2203