Contrastive Learning-Based Feature-Consistency Distillation Network for Weak Fault Diagnosis of Harmonic Drive

被引:0
作者
Chen, Jiaxian [1 ]
Li, Dongpeng [1 ]
Huang, Ruyi [2 ]
Chen, Zhuyun [3 ]
Li, Weihua [4 ]
机构
[1] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 511442, Peoples R China
[2] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510641, Peoples R China
[3] Guangdong Univ Technol, State Key Lab Precis Elect Mfg Technol & Equipment, Guangzhou 510006, Peoples R China
[4] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Contrastive learning; deep learning (DL); fault diagnosis; harmonic drive; weak fault;
D O I
10.1109/TIM.2025.3544384
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The deep learning (DL) technology has contributed excellent intelligent diagnosis algorithms and network structures for fault diagnosis of mechanical equipment. However, it requires high-quality fault samples to train models, which significantly challenges the weak fault diagnosis because the early fault characteristics of signals are extremely weak and easily overwhelmed by background noise. To resolve this problem, a weak fault diagnosis method called a contrastive learning-based feature-consistency distillation (CL-FCD) network is proposed, including feature extraction, feature augmentation, and classification modules. First, a multidilation rate dilated convolutional block is developed to extract weak fault features at different scales receptive fields, which can improve the feature representation of weak faults. Second, a feature-consistency distillation loss is designed in the feature augmentation module to align the feature distribution between the weak fault and severe fault by the contrastive learning technology, where the severe fault features are obtained through a convolutional neural network (CNN) trained on severe fault samples. Finally, the classifier pretrained on severe faults is employed to diagnose the weak fault. In this way, weak features can be augmented to achieve the same high discriminatory power as severe faults. The effectiveness and generalization of the proposed method are verified on a rolling bearing dataset and harmonic drive dataset, which outperform existing methods in weak fault diagnosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Establishment of a deep learning network based on feature extraction and its application in gearbox fault diagnosis
    Wu, QingE
    Guo, Yinghui
    Chen, Hu
    Qiang, Xiaoliang
    Wang, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (01) : 125 - 149
  • [32] A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
    Jing, Luyang
    Zhao, Ming
    Li, Pin
    Xu, Xiaoqiang
    MEASUREMENT, 2017, 111 : 1 - 10
  • [33] Unified feature learning network for few-shot fault diagnosis
    Xu, Yan
    Ma, Xinyao
    Wang, Xuan
    Wang, Jinjia
    Tang, Gang
    Ji, Zhong
    NEUROCOMPUTING, 2024, 598
  • [34] Pruning graph convolutional network-based feature learning for fault diagnosis of industrial processes
    Zhang, Yue
    Yu, Jianbo
    JOURNAL OF PROCESS CONTROL, 2022, 113 : 101 - 113
  • [35] Transfer Learning-Based Fault Diagnosis Method for Marine Turbochargers
    Dong, Fei
    Yang, Jianguo
    Cai, Yunkai
    Xie, Liangtao
    ACTUATORS, 2023, 12 (04)
  • [36] Deep Learning-Based Fault Diagnosis for Marine Centrifugal Fan
    Li, Congyue
    Hu, Yihuai
    Jiang, Jiawei
    Yan, Guohua
    POLISH MARITIME RESEARCH, 2023, 30 (01) : 112 - 120
  • [37] Transfer Learning-Based Fault Diagnosis under Data Deficiency
    Cho, Seong Hee
    Kim, Seokgoo
    Choi, Joo-Ho
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 11
  • [38] An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery
    Tian, Jing
    Azarian, Michael H.
    Pecht, Michael
    Niu, Gang
    Li, Chuan
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 96 - 101
  • [39] Feature learning and fault diagnosis in multivariate process with convolutional neural network
    Chen S.
    Yu J.
    Yu, Jianbo (jbyu@tongji.edu.cn), 1600, Harbin Institute of Technology (52): : 59 - 67
  • [40] A balanced supervised contrastive learning-based method for encrypted network traffic classification
    Ma, Yuxiang
    Li, Zhaodi
    Xue, Haoming
    Chang, Jike
    COMPUTERS & SECURITY, 2024, 145