The Europium-Based Artificial Solid Electrolyte Interphase for High-Performance Aqueous Zinc-Ion Batteries

被引:0
|
作者
Zhao, Xiaowei [1 ]
Liu, Mengyu [2 ]
Zhang, Ruixin [1 ]
Zhao, Shunshun [2 ]
Zhou, Wanting [2 ]
Liu, Lili [1 ]
Chen, Shimou [2 ]
机构
[1] Beijing Technol & Business Univ, Coll Light Ind Sci & Engn, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2025年
基金
中国国家自然科学基金;
关键词
zinc-ion batteries; electrolyte; interfacelayer; europium metal; beta-PVDF; dendritesuppression; PHASE;
D O I
10.1021/acsapm.4c04200
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With their high safety, high specific capacity, and low economic cost, the environmentally friendly aqueous zinc-ion batteries (AZIBs) are a prospective energy storage technology. However, the challenges faced, such as promiscuous growth of dendrites, water-related corrosion reactions, and weak ion migration ability, significantly affect the development of AZIBs. Herein, poly(vinylidene fluoride) (beta-PVDF) with high polarity was used as carrier, and a certain amount of europium chloride was doped to create an artificial solid electrolyte interface (ASEI) layer with hydrophilicity (denoted as PVDF-Eu). The resulting ASEI facilitates the uniform distribution of zinc ions (Zn2+), so as to enable uniform Zn deposition. Additionally, the ASEI can effectively suppress the side reactions and improve the cyclic stability of the cells. Consequently, with the effective assistance of the ASEI, the symmetrical Zn//Zn cell can achieve stable plating/stripping for 500 h at a current density of 20 mA cm-2. The Zn//Cu asymmetrical cell can achieve stable cycles of up to 2250 with an initial Coulombic efficiency of 98.5%. The capacity retention rate of a sodium vanadate based zinc-ion full cell reaches 90.6% after 900 cycles at 10 A g-1. This ASEI strategy demonstrates a method to enhance the performance of AZIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Organic cation-supported layered vanadate cathode for high-performance aqueous zinc-ion batteries
    Wang, Changding
    Li, Yingfang
    Zhang, Sida
    Sang, Tian-Yi
    Lei, Yu
    Liu, Ruiqi
    Wan, Fu
    Chen, Yuejiao
    Chen, Weigen
    Zheng, Yujie
    Sun, Shuhui
    CARBON ENERGY, 2025, 7 (02)
  • [32] Manipulating Polymer Configuration to Accelerate Cation Intercalation Kinetics for High-Performance Aqueous Zinc-Ion Batteries
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (27)
  • [33] Self-assembled interfacial protective layer toward high-performance aqueous zinc-ion batteries
    Song, Lixin
    Li, Yawen
    Fan, Yongbo
    Liao, Zhiyong
    Zhang, Ruizhe
    Che, Xiuzi
    Yang, Zhenhai
    Fan, Huiqing
    Ma, Longtao
    ELECTROCHIMICA ACTA, 2025, 513
  • [34] High-Performance Aqueous Zinc-Ion Battery Based on Laser-Induced Graphene
    Yang, Chengjuan
    Tong, Yuchun
    Yang, Zhen
    Xiao, Hui
    Qi, Huimin
    Chen, Faze
    NANOMANUFACTURING AND METROLOGY, 2023, 6 (01)
  • [35] "Soggy-Sand" Chemistry for High-Voltage Aqueous Zinc-Ion Batteries
    Deng, Rongyu
    Chen, Jieshuangyang
    Chu, Fulu
    Qian, Mingzhi
    He, Zhenjiang
    Robertson, Alex W.
    Maier, Joachim
    Wu, Feixiang
    ADVANCED MATERIALS, 2024, 36 (11)
  • [36] Recent Progress in Aqueous Zinc-ion Batteries at High Zinc Utilization
    Han, Yu
    Yan, Zichao
    Zhang, Lei
    Zhu, Zhiqiang
    CHEMSUSCHEM, 2025, 18 (01)
  • [37] Ultralong-Life Quinone-Based Porous Organic Polymer Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Buyukcakir, Onur
    Yuksel, Recep
    Begar, Ferit
    Erdogmus, Mustafa
    Arsakay, Madi
    Lee, Sun Hwa
    Kim, Sang Ouk
    Ruoff, Rodney S. S.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7672 - 7680
  • [38] Fabrication of a Robust and Porous MnO2 Electrode as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ENERGY TECHNOLOGY, 2023, 11 (12)
  • [39] MoSe2 hollow nanospheres with expanded selenide interlayers for high-performance aqueous zinc-ion batteries
    Xie, Xingchen
    Wang, Ni
    Sun, Baolong
    Zhong, Li
    He, Lixiang
    Komarneni, Sridhar
    Hu, Wencheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 456 - 465
  • [40] Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries
    Park, Jeong-Hoon
    Park, Sung Hyun
    Joung, Daeha
    Kim, Chanhoon
    CHEMICAL ENGINEERING JOURNAL, 2022, 433