Integrating machine learning to advance epitope mapping

被引:0
|
作者
Grewal, Simranjit [1 ]
Hegde, Nidhi [2 ]
Yanow, Stephanie K. [1 ,3 ]
机构
[1] Univ Alberta, Dept Med Microbiol & Immunol, Edmonton, AB, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[3] Univ Alberta, Sch Publ Hlth, Edmonton, AB, Canada
来源
FRONTIERS IN IMMUNOLOGY | 2024年 / 15卷
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
machine learning; epitope; B-cell; algorithm; features; databases; toolboxes; vaccine; B-CELL EPITOPES; NEURAL-NETWORK; SPATIAL EPITOPE; HIGH-ACCURACY; WEB SERVER; PREDICTION; DATABASE; BINDING; DOCKING; CLASSIFICATION;
D O I
10.3389/fimmu.2024.1463931
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Identifying epitopes, or the segments of a protein that bind to antibodies, is critical for the development of a variety of immunotherapeutics and diagnostics. In vaccine design, the intent is to identify the minimal epitope of an antigen that can elicit an immune response and avoid off-target effects. For prognostics and diagnostics, the epitope-antibody interaction is exploited to measure antigens associated with disease outcomes. Experimental methods such as X-ray crystallography, cryo-electron microscopy, and peptide arrays are used widely to map epitopes but vary in accuracy, throughput, cost, and feasibility. By comparing machine learning epitope mapping tools, we discuss the importance of data selection, feature design, and algorithm choice in determining the specificity and prediction accuracy of an algorithm. This review discusses limitations of current methods and the potential for machine learning to deepen interpretation and increase feasibility of these methods. We also propose how machine learning can be employed to refine epitope prediction to address the apparent promiscuity of polyreactive antibodies and the challenge of defining conformational epitopes. We highlight the impact of machine learning on our current understanding of epitopes and its potential to guide the design of therapeutic interventions with more predictable outcomes.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Mapping membrane activity in undiscovered peptide sequence space using machine learning
    Lee, Ernest Y.
    Fulan, Benjamin M.
    Wong, Gerard C. L.
    Ferguson, Andrew L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (48) : 13588 - 13593
  • [42] A review on extreme learning machine
    Wang, Jian
    Lu, Siyuan
    Wang, Shui-Hua
    Zhang, Yu-Dong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 41611 - 41660
  • [43] Machine Learning Meets Cancer
    Varlamova, Elena V.
    Butakova, Maria A.
    Semyonova, Vlada V.
    Soldatov, Sergey A.
    Poltavskiy, Artem V.
    Kit, Oleg I.
    Soldatov, Alexander V.
    CANCERS, 2024, 16 (06)
  • [44] Integrating Machine Learning Into Vehicle Routing Problem: Methods and Applications
    Shahbazian, Reza
    Pugliese, Luigi Di Puglia
    Guerriero, Francesca
    Macrina, Giusy
    IEEE ACCESS, 2024, 12 : 93087 - 93115
  • [45] A Comprehensive Review of Machine Learning Used to Combat COVID-19
    Gomes, Rahul
    Kamrowski, Connor
    Langlois, Jordan
    Rozario, Papia
    Dircks, Ian
    Grottodden, Keegan
    Martinez, Matthew
    Tee, Wei Zhong
    Sargeant, Kyle
    LaFleur, Corbin
    Haley, Mitchell
    DIAGNOSTICS, 2022, 12 (08)
  • [46] Machine Learning for Detection of Muscular Activity from Surface EMG Signals
    Di Nardo, Francesco
    Nocera, Antonio
    Cucchiarelli, Alessandro
    Fioretti, Sandro
    Morbidoni, Christian
    SENSORS, 2022, 22 (09)
  • [47] Integrating Machine Learning and Mathematical Optimization for Job Shop Scheduling
    Liu, Anbang
    Luh, Peter B.
    Sun, Kailai
    Bragin, Mikhail A.
    Yan, Bing
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 4829 - 4850
  • [48] Integrating expert knowledge with machine learning for AI-based stroke identifications and treatment systems
    Yimenu, Taddesse kassu
    Adege, Abebe Belay
    Techan, Sofonias Yitagesu
    DIGITAL HEALTH, 2025, 11
  • [49] Integrating White and Black Box Techniques for Interpretable Machine Learning
    Vernon, Eric M.
    Masuyama, Naoki
    Nojima, Yusuke
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 4, 2024, 1014 : 639 - 649
  • [50] Mapping the Internet: Geolocating Routers by Using Machine Learning
    Prieditis, Armand
    Chen, Gang
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING FOR GEOSPATIAL RESEARCH AND APPLICATION (COM.GEO), 2013, : 101 - 105