Integrating machine learning to advance epitope mapping

被引:0
|
作者
Grewal, Simranjit [1 ]
Hegde, Nidhi [2 ]
Yanow, Stephanie K. [1 ,3 ]
机构
[1] Univ Alberta, Dept Med Microbiol & Immunol, Edmonton, AB, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[3] Univ Alberta, Sch Publ Hlth, Edmonton, AB, Canada
来源
FRONTIERS IN IMMUNOLOGY | 2024年 / 15卷
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
machine learning; epitope; B-cell; algorithm; features; databases; toolboxes; vaccine; B-CELL EPITOPES; NEURAL-NETWORK; SPATIAL EPITOPE; HIGH-ACCURACY; WEB SERVER; PREDICTION; DATABASE; BINDING; DOCKING; CLASSIFICATION;
D O I
10.3389/fimmu.2024.1463931
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Identifying epitopes, or the segments of a protein that bind to antibodies, is critical for the development of a variety of immunotherapeutics and diagnostics. In vaccine design, the intent is to identify the minimal epitope of an antigen that can elicit an immune response and avoid off-target effects. For prognostics and diagnostics, the epitope-antibody interaction is exploited to measure antigens associated with disease outcomes. Experimental methods such as X-ray crystallography, cryo-electron microscopy, and peptide arrays are used widely to map epitopes but vary in accuracy, throughput, cost, and feasibility. By comparing machine learning epitope mapping tools, we discuss the importance of data selection, feature design, and algorithm choice in determining the specificity and prediction accuracy of an algorithm. This review discusses limitations of current methods and the potential for machine learning to deepen interpretation and increase feasibility of these methods. We also propose how machine learning can be employed to refine epitope prediction to address the apparent promiscuity of polyreactive antibodies and the challenge of defining conformational epitopes. We highlight the impact of machine learning on our current understanding of epitopes and its potential to guide the design of therapeutic interventions with more predictable outcomes.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Integrating discrete wavelet transform with neural networks and machine learning for fault detection in microgrids
    Cano, Antonio
    Arevalo, Paul
    Benavides, Dario
    Jurado, Francisco
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155
  • [32] Adulteration detection in cactus seed oil: Integrating analytical chemistry and machine learning approaches
    El Harkaoui, Said
    Cruz, Cristina Ortiz
    Roggenland, Aaron
    Schneider, Micha
    Rohn, Sascha
    Drusch, Stephan
    Matthaeus, Bertrand
    CURRENT RESEARCH IN FOOD SCIENCE, 2025, 10
  • [33] Recent Progress of Machine Learning Algorithms for the Oil and Lubricant Industry
    Rahman, Md Hafizur
    Shahriar, Sadat
    Menezes, Pradeep L.
    LUBRICANTS, 2023, 11 (07)
  • [34] Review of machine learning-based Mineral Resource estimation
    Mahoob, M. A.
    Celik, T.
    Genc, B.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2022, 122 (11) : 655 - 664
  • [35] Review on tool condition classification in milling: A machine learning approach
    Patange, Abhishek D.
    Jegadeeshwaran, R.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 1106 - 1115
  • [36] The advance of digital twin for predictive maintenance: The role and function of machine learning
    Chen, Chong
    Fu, Huibin
    Zheng, Yu
    Tao, Fei
    Liu, Ying
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 581 - 594
  • [37] A systematic mapping to investigate the application of machine learning techniques in requirement engineering activities
    Hassan, Shoaib
    Li, Qianmu
    Aurangzeb, Khursheed
    Yasin, Affan
    Khan, Javed Ali
    Anwar, Muhammad Shahid
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, : 1412 - 1434
  • [38] Machine learning-based farm risk management: A systematic mapping review
    Ghaffarian, Saman
    van der Voort, Mariska
    Valente, Joao
    Tekinerdogan, Bedir
    de Mey, Yann
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 192
  • [39] Integrating Iterative Machine Teaching and Active Learning into the Machine Learning Loop
    Mosqueira-Rey, Eduardo
    Alonso-Rios, David
    Baamonde-Lozano, Andres
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 553 - 562
  • [40] A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE)
    Su, Miao
    Peng, Hui
    Li, Shaofan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186