Complexity of the usual torus action on Kazhdan-Lusztig varieties

被引:1
作者
Donten-Bury, Maria [1 ]
Escobar, Laura [2 ]
Portakal, Irem [3 ]
机构
[1] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
[2] Washington Univ St Louis, Dept Math & Stat, One Brookings Dr, St Louis, MO 63130 USA
[3] Tech Univ Munich, Lehrstuhl fur Math Stat, Boltzmannstr 3, D-85748 Garching, Germany
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 03期
关键词
Schubert variety; Kazhdan-Lusztig variety; weight cone; torus action; toric variety; T-variety; edge cone; directed graph; POLYHEDRAL DIVISORS; SCHUBERT VARIETIES; SINGULARITIES; NORMALITY; GEOMETRY; IDEALS;
D O I
10.5802/alco.279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of Kazhdan-Lusztig varieties, and its subclass of matrix Schubert varieties, endowed with a naturally defined torus action. Writing a matrix Schubert variety (X (w)) over bar as (X (w)) over bar = Y-w x C-d (where d is maximal possible), we show that Y-w can be of complexity-k exactly when k not equal 1. Also, we give a combinatorial description of the extremal rays of the weight cone of a Kazhdan-Lusztig variety, which in particular turns out to be the edge cone of an acyclic directed graph. As a consequence we show that given permutations v and w , the complexity of Kazhdan-Lusztig variety indexed by (v, w) is the same as the complexity of the Richardson variety indexed by (v, w). Finally, we use this description to compute the complexity of certain Kazhdan-Lusztig varieties.
引用
收藏
页码:835 / 861
页数:28
相关论文
共 32 条
[1]   Polyhedral divisors and algebraic torus actions [J].
Altmann, K ;
Hausen, J .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :557-607
[2]  
Altmann K, 2012, EMS SER CONGR REP, P17
[3]   Polyhedral Divisors of Cox Rings [J].
Altmann, Klaus ;
Wisniewski, Jaroslaw A. .
MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (02) :463-480
[4]  
Billey Sara, 2000, Progr. Math., V182
[5]  
Bjorner A., 2005, Graduate Texts in Mathematics, V231, DOI 10.1007/3-540-27596-7
[6]  
Brion M, 2005, TRENDS MATH, P33, DOI 10.1007/3-7643-7342-3_2
[7]   When are multidegrees positive? [J].
Castillo, Federico ;
Cid-Ruiz, Yairon ;
Li, Binglin ;
Montano, Jonathan ;
Zhang, Naizhen .
ADVANCES IN MATHEMATICS, 2020, 374
[8]  
Comtet L., 1970, ADV COMBINATORICS AR
[9]   ARITHMETIC COHEN-MACAULAYNESS AND ARITHMETIC NORMALITY FOR SCHUBERT VARIETIES [J].
DECONCINI, C ;
LAKSHMIBAI, V .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) :835-850
[10]   TORIC MATRIX SCHUBERT VARIETIES AND THEIR POLYTOPES [J].
Escobar, Laura ;
Meszaros, Karola .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) :5081-5096