Spectral element method for the solution of viscoelastic seismic wave propagation

被引:0
|
作者
Barzegar, Feze [1 ]
Rashidinia, Jalil [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math & Comp Sci, Tehran, Iran
关键词
Viscoelastic wave equations; Spectral element method; Gauss-Legendre-Lobatto points; Error analysis; ERROR ANALYSIS; APPROXIMATION; SIMULATIONS; EQUATION;
D O I
10.1016/j.apnum.2025.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Gauss-Legendre-Lobatto spectral element method combined with the Crank-Nicolson (CN) technique to solve the viscoelastic wave equation model. The CN technique is chosen for its unconditional stability and second-order accuracy. Additionally, the convergence order is determined for the time semi-discrete scheme of the problem. The Gauss-Legendre-Lobatto points are used as interpolation nodes and integral quadrature points to discretize the spatial direction with the spectral element method, providing an a priori estimate. Numerical results demonstrate the proposed method's high efficiency and accuracy.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [41] Spectral element method implementation on GPU for Lamb wave simulation
    Kudela, Pawel
    Wandowski, Tomasz
    Radzienski, Maciej
    Ostachowicz, Wieslaw
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2017, 2017, 10170
  • [42] Time-domain spectral element method for 3-D wave propagation analysis of piezoelectric coupled structures
    Yu Z.
    Xu C.
    Xu, Chao, 2018, Chinese Vibration Engineering Society (37): : 140 - 146
  • [43] Numerical simulation on stress wave propagation of steel-concrete composite structures with interface debonding by spectral element method
    Luan L.-L.
    Xu B.
    Chen H.-B.
    Gongcheng Lixue/Engineering Mechanics, 2017, 34 (02): : 145 - 152
  • [44] Guided wave propagation in an infinite functionally graded magneto-electro-elastic plate by the Chebyshev spectral element method
    Xiao, Dongliang
    Han, Qiang
    Liu, Yijie
    Li, Chunlei
    COMPOSITE STRUCTURES, 2016, 153 : 704 - 711
  • [45] Towards the shear-wave sonic reverse time migration with the spectral element method
    Malovichko, Mikhail
    Sabitov, Denis
    Dmitriev, Maxim
    Zharnikov, Timur
    JOURNAL OF APPLIED GEOPHYSICS, 2025, 233
  • [46] Solution of moving-boundary problems by the spectral element method
    Bodard, Nicolas
    Bouffanais, Roland
    Deville, Michel O.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (07) : 968 - 984
  • [47] Seismic wave propagation in fully anisotropic axisymmetric media
    van Driel, Martin
    Nissen-Meyer, Tarje
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 199 (02) : 880 - 893
  • [48] Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method
    Yang, Duoxing
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (12):
  • [49] On the Bloch decomposition based spectral method for wave propagation in periodic media
    Huang, Zhongyi
    Jin, Shi
    Markowich, Peter A.
    Sparber, Christof
    WAVE MOTION, 2009, 46 (01) : 15 - 28
  • [50] A linearizing-decoupling finite element method with stabilization for the Peterlin viscoelastic model
    Xia, Lekang
    Zhou, Guanyu
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 789 - 819