Optimizing water-use efficiency under elevated CO2: A meta-analysis of crop type, soil modulation, and enrichment methods

被引:0
|
作者
Mokhtar, Ali [1 ,2 ]
He, Hongming [1 ]
Attaher, Samar [3 ]
Salem, Ali [4 ,5 ]
Alam, Muneer [1 ]
机构
[1] East China Normal Univ, Sch Geog Sci, Shanghai 209962, Peoples R China
[2] Cairo Univ, Fac Agr, Dept Agr Engn, Giza 12613, Egypt
[3] Int Ctr Agr Res Dry Areas ICARDA, Maadi, Egypt
[4] Minia Univ, Fac Engn, Civil Engn Dept, Al Minya 61111, Egypt
[5] Univ Pecs, Fac Engn & Informat Technol, Struct Diagnost & Anal Res Grp, Boszorkany Ut 2, H-7624 Pecs, Hungary
基金
中国国家自然科学基金;
关键词
Elevated CO2; Photosynthetic rate; Stomatal conductance; Water use efficiency; Yield; Meta-analysis; Random effect model; ATMOSPHERIC CO2; DEFICIT IRRIGATION; CARBON-DIOXIDE; TOMATO PLANTS; WHEAT; GROWTH; YIELD; DROUGHT; COTTON; PRODUCTIVITY;
D O I
10.1016/j.agwat.2025.109312
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Elevated CO2 (eCO2) significantly affect the carbon-water cycle in terrestrial ecosystems especially for gas exchange and water use efficiency (WUE). Therefore, in this study, we have conducted a meta-analysis to quantitative statistical means among studies and discuss how WUE responds to eCO2 under pathway (C3 and C4), four enrichment methods and soil types based on 124 peer-reviewed studies and 1474 observations to provide an indepth overview of how these factors interact under future CO2 scenarios. Key findings reveal that: (1) C3 crops, such as potato and tomato, show significantly greater increases in WUE compared to C4 crops like maize, with effect sizes of 13.96 and 7.02 for plant-level WUE (WUEp), suggesting that C3 crops may be more advantageous in water-limited environments due to reduced photorespiration under eCO2; (2) soil type substantially modulates WUE responses, with clay soils, due to their high water-holding capacity, demonstrating the highest WUE enhancements (effect sizes of 7.87 for WUEp and 12.54 for yield WUE, WUE gamma), while sandy soils, characterized by rapid drainage, showed limited improvements; and (3) greenhouse and growth chamber studies displayed the highest WUE improvements, while FACE experiments, which better replicate real-world conditions, indicated smaller WUE increases due to environmental variability, underscoring the need for a hybrid approach that merges controlled data with field insights to develop practical, water-efficient agricultural strategies. Collectively, these findings highlight the potential for crop- and soil-specific strategies to optimize WUE under elevated CO2, offering valuable insights for sustainable agriculture and climate adaptation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop
    Sanchez-Guerrero, M. C.
    Lorenzo, P.
    Medrano, E.
    Baille, A.
    Castilla, N.
    AGRICULTURAL WATER MANAGEMENT, 2009, 96 (03) : 429 - 436
  • [22] Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency
    Flexas, Jaume
    Niinemets, Uelo
    Galle, Alexander
    Barbour, Margaret M.
    Centritto, Mauro
    Diaz-Espejo, Antonio
    Douthe, Cyril
    Galmes, Jeroni
    Ribas-Carbo, Miquel
    Rodriguez, Pedro L.
    Rossello, Francesc
    Soolanayakanahally, Raju
    Tomas, Magdalena
    Wright, Ian J.
    Farquhar, Graham D.
    Medrano, Hipolito
    PHOTOSYNTHESIS RESEARCH, 2013, 117 (1-3) : 45 - 59
  • [23] Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency
    Jaume Flexas
    Ülo Niinemets
    Alexander Gallé
    Margaret M. Barbour
    Mauro Centritto
    Antonio Diaz-Espejo
    Cyril Douthe
    Jeroni Galmés
    Miquel Ribas-Carbo
    Pedro L. Rodriguez
    Francesc Rosselló
    Raju Soolanayakanahally
    Magdalena Tomas
    Ian J. Wright
    Graham D. Farquhar
    Hipólito Medrano
    Photosynthesis Research, 2013, 117 : 45 - 59
  • [24] Photosynthetic activity and water use efficiency of Salvia verbenaca L. under elevated CO2 and water-deficit conditions
    Javaid, Muhammad Mansoor
    Florentine, Singarayer K.
    Ashraf, Muhammad
    Mahmood, Athar
    Sattar, Abdul
    Wasaya, Allah
    Li, Feng-Min
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2022, 208 (04) : 536 - 551
  • [25] The Responses of Plant Leaf CO2/H2O Exchange and Water Use Efficiency to Drought: A Meta-Analysis
    Zhang, Jinmeng
    Jiang, Hong
    Song, Xinzhang
    Jin, Jiaxin
    Zhang, Xiuying
    SUSTAINABILITY, 2018, 10 (02)
  • [26] Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought
    Picon, C
    Guehl, JM
    Aussenac, G
    ANNALES DES SCIENCES FORESTIERES, 1996, 53 (2-3): : 431 - 446
  • [27] A global meta-analysis of soil respiration in response to elevated CO2
    Liu, Junjie
    Fan, Bo
    Sun, Zhongyi
    Dai, Licong
    Duan, Abing
    SOIL BIOLOGY & BIOCHEMISTRY, 2025, 203
  • [28] Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis
    Hu, Enzhu
    Ren, Zhimin
    Xu, Sheng
    Zhang, Weiwei
    SUSTAINABILITY, 2021, 13 (08)
  • [29] The enhancement of photosynthetic performance, water use efficiency and potato yield under elevated CO2 is cultivar dependent
    Dahal, Keshav
    Milne, Matthew A.
    Gervais, Taylor
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [30] THE INTERACTION OF RISING CO2 AND TEMPERATURES WITH WATER-USE EFFICIENCY
    EAMUS, D
    PLANT CELL AND ENVIRONMENT, 1991, 14 (08) : 843 - 852