Optimizing water-use efficiency under elevated CO2: A meta-analysis of crop type, soil modulation, and enrichment methods

被引:0
|
作者
Mokhtar, Ali [1 ,2 ]
He, Hongming [1 ]
Attaher, Samar [3 ]
Salem, Ali [4 ,5 ]
Alam, Muneer [1 ]
机构
[1] East China Normal Univ, Sch Geog Sci, Shanghai 209962, Peoples R China
[2] Cairo Univ, Fac Agr, Dept Agr Engn, Giza 12613, Egypt
[3] Int Ctr Agr Res Dry Areas ICARDA, Maadi, Egypt
[4] Minia Univ, Fac Engn, Civil Engn Dept, Al Minya 61111, Egypt
[5] Univ Pecs, Fac Engn & Informat Technol, Struct Diagnost & Anal Res Grp, Boszorkany Ut 2, H-7624 Pecs, Hungary
基金
中国国家自然科学基金;
关键词
Elevated CO2; Photosynthetic rate; Stomatal conductance; Water use efficiency; Yield; Meta-analysis; Random effect model; ATMOSPHERIC CO2; DEFICIT IRRIGATION; CARBON-DIOXIDE; TOMATO PLANTS; WHEAT; GROWTH; YIELD; DROUGHT; COTTON; PRODUCTIVITY;
D O I
10.1016/j.agwat.2025.109312
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Elevated CO2 (eCO2) significantly affect the carbon-water cycle in terrestrial ecosystems especially for gas exchange and water use efficiency (WUE). Therefore, in this study, we have conducted a meta-analysis to quantitative statistical means among studies and discuss how WUE responds to eCO2 under pathway (C3 and C4), four enrichment methods and soil types based on 124 peer-reviewed studies and 1474 observations to provide an indepth overview of how these factors interact under future CO2 scenarios. Key findings reveal that: (1) C3 crops, such as potato and tomato, show significantly greater increases in WUE compared to C4 crops like maize, with effect sizes of 13.96 and 7.02 for plant-level WUE (WUEp), suggesting that C3 crops may be more advantageous in water-limited environments due to reduced photorespiration under eCO2; (2) soil type substantially modulates WUE responses, with clay soils, due to their high water-holding capacity, demonstrating the highest WUE enhancements (effect sizes of 7.87 for WUEp and 12.54 for yield WUE, WUE gamma), while sandy soils, characterized by rapid drainage, showed limited improvements; and (3) greenhouse and growth chamber studies displayed the highest WUE improvements, while FACE experiments, which better replicate real-world conditions, indicated smaller WUE increases due to environmental variability, underscoring the need for a hybrid approach that merges controlled data with field insights to develop practical, water-efficient agricultural strategies. Collectively, these findings highlight the potential for crop- and soil-specific strategies to optimize WUE under elevated CO2, offering valuable insights for sustainable agriculture and climate adaptation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis
    Gao, Yang
    Shao, Guangcheng
    Lu, Jia
    Zhang, Kun
    Wu, Shiqing
    Wang, Zhiyu
    FIELD CROPS RESEARCH, 2020, 249
  • [2] Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes
    Qiao, Yunzhou
    Zhang, Huizhen
    Dong, Baodi
    Shi, Changhai
    Li, Yuxin
    Zhai, Hongmei
    Liu, Mengyu
    AGRICULTURAL WATER MANAGEMENT, 2010, 97 (11) : 1742 - 1748
  • [3] Differential crop yield responses to elevated CO2 attributed to varying biomass part stimulations: a meta-analysis
    Bai, Yanling
    Liu, Liu
    Li, Hao
    Peng, Xi
    Fa, Keyu
    Huang, Guanhua
    PLANT AND SOIL, 2024, : 981 - 996
  • [4] Crop yield and water use efficiency under aerated irrigation: A meta-analysis
    Du, Ya-Dan
    Niu, Wen-Quan
    Gu, Xiao-Bo
    Zhang, Qian
    Cui, Bing-Jing
    Zhao, Ying
    AGRICULTURAL WATER MANAGEMENT, 2018, 210 : 158 - 164
  • [5] A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency
    Wang, Jun
    Zhang, Shaohong
    Sainju, Upendra M.
    Ghimire, Rajan
    Zhao, Fazhu
    AGRICULTURAL WATER MANAGEMENT, 2021, 256
  • [6] A meta-analysis of crop leaf gas exchange responses to elevated CO2 and water deficits using optimal stomatal theory
    Du, Bin
    Shukla, M. K.
    Du, Taisheng
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2025, 232
  • [7] Water Deficit Modulates the CO2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis
    Li, Fei
    Guo, Dagang
    Gao, Xiaodong
    Zhao, Xining
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [8] Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis
    Li, Qiang
    Li, Hongbing
    Zhang, Li
    Zhang, Suiqi
    Chen, Yinglong
    FIELD CROPS RESEARCH, 2018, 221 : 50 - 60
  • [9] Water-use efficiency of four native trees under CO2 enrichment and N addition in subtropical model forest ecosystems
    Li, Yiyong
    Liu, Juxiu
    Chen, Genyun
    Zhou, Guoyi
    Huang, Wenjuan
    Yin, Guangcai
    Zhang, Deqiang
    Li, Yuelin
    JOURNAL OF PLANT ECOLOGY, 2015, 8 (04) : 411 - 419
  • [10] A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation
    Tong, Xuanyue
    Wu, Pute
    Liu, Xufei
    Zhang, Lin
    Zhou, Wei
    Wang, Zhaoguo
    AGRICULTURAL WATER MANAGEMENT, 2022, 260