Three-Dimensional Discrete Element Modeling for the Angle of Repose of Granular Materials: Artificial Intelligence and Machine Learning Approach

被引:0
作者
Mustafa, Yassir Mubarak Hussein [1 ]
Al-Hashemi, Hamzah M. B. [2 ]
Al-Amoudi, Omar Saeed Baghabra [1 ,3 ]
Jasim, Omar Hamdi [4 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[2] Indian Inst Technol, Civil Engn Dept, Mumbai, India
[3] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[4] Univ Anbar, Ctr Desert Studies, Ramadi 31001, Iraq
关键词
DEM; Angle of repose; Machine learning; Multilinear regression; Static friction; Decision tree; DEM; CALIBRATION; CONTACT; SIMULATION; MICROPARAMETERS; PARTICLES; FRAMEWORK; FRICTION; ENERGY;
D O I
10.1007/s13369-024-09942-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research studies the calibration of contact parameters for Johnson-Kendall-Roberts (JKR) model using machine learning (ML) algorithms. Multiple linear regression (MLR), support vector regression (SVR), decision trees (DT), and extreme gradient boost (XGBoost) were used. The angle of repose (AoR) of granular piles was measured, and a DEM model was built to simulate the experiment. After calibration, the model was used to generate a database that was used to train the ML algorithms. All algorithms exhibited high coefficients of determination (R2) and low errors. Additionally, the study discussed the effect of the different features on the accuracy of the models and presented a feature importance analysis for the different ML algorithms. Finally, a simplified method was suggested to calibrate the contact parameters using the XGboost method. The method was able to estimate the contact parameters that resulted in accurately determining the AoR of a selected sandy soil.
引用
收藏
页数:24
相关论文
共 76 条
  • [1] Angle of repose in the numerical modeling of ballast particles focusing on particle-dependent specifications: Parametric study
    Aela, Peyman
    Zong, Lu
    Esmaeili, Morteza
    Siahkouhi, Mohammad
    Jing, Guoqing
    [J]. PARTICUOLOGY, 2022, 65 : 39 - 50
  • [2] Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials
    Ahmad, Mahmood
    Al-Mansob, Ramez A.
    Kashyzadeh, Kazem Reza
    Keawsawasvong, Suraparb
    Sabri, Mohanad Muayad Sabri
    Jamil, Irfan
    Alguno, Arnold C.
    [J]. COMPLEXITY, 2022, 2022
  • [3] A review on the angle of repose of granular materials
    Al-Hashemi, Hamzah M. Beakawi
    Al-Amoudi, Omar S. Baghabra
    [J]. POWDER TECHNOLOGY, 2018, 330 : 397 - 417
  • [4] Al-Hashemi HMB., 2018, A review on the angle of repose of granular materials, DOI [10.1016/j.powtec.2018.02.003, DOI 10.1016/J.POWTEC.2018.02.003]
  • [5] Ali Z A., 2023, Acad. J. Nawroz Univ, V12, P320, DOI [DOI 10.25007/AJNU.V12N2A1612, 10.1016/j.solener.2017.05.018]
  • [6] Calibrating friction coefficients in discrete element method simulations with shear-cell experiments
    Angus, Andrew
    Yahia, Lyes Ait Ali
    Maione, Riccardo
    Khala, Marv
    Hare, Colin
    Ozel, Ali
    Ocone, Raffaella
    [J]. POWDER TECHNOLOGY, 2020, 372 (372) : 290 - 304
  • [7] In-Vehicle Network Anomaly Detection Using Extreme Gradient Boosting Machine
    Anjum, Afia
    Agbaje, Paul
    Hounsinou, Sena
    Olufowobi, Habeeb
    [J]. 2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 100 - 105
  • [8] Awad M., 2015, Efficient learning machines, P39, DOI [DOI 10.1007/978-1-4302-5990-9_3, 10.1007/978-1-4302-5990-9, DOI 10.1007/978-1-4302-5990-9, DOI 10.1007/978-1-4302-5990-93, 10.1007/978-1-4302-5990-9_3]
  • [9] Bahzad Taha Jijo A. M. A., 2021, Journal of Applied Science and Technology Trends, P20, DOI [10.38094/jastt20165, DOI 10.38094/JASTT20165]
  • [10] Barreto D., 2021, Modeling in Geotechnical Engineering, P79, DOI DOI 10.1016/B978-0-12-821205-9.00016-2