DNA Nanotechnology in the Undergraduate Laboratory: Toehold-Less Strand Displacement in Switchback DNA

被引:0
|
作者
Madhanagopal, Bharath Raj [1 ]
Chandrasekaran, Arun Richard [1 ,2 ]
机构
[1] SUNY Albany, RNA Inst, Albany, NY 12222 USA
[2] SUNY Albany, Dept Nanoscale Sci & Engn, Albany, NY 12222 USA
来源
JACS AU | 2025年 / 5卷 / 02期
基金
美国国家卫生研究院;
关键词
Upper-division undergraduate; Biochemistry; Interdisciplinary/multidisciplinary; Hands-on learning/manipulatives; Electrophoresis; Molecular properties/structure; Nanotechnology; Nucleic acids/DNA/RNA; Undergraduateresearch; DNA nanotechnology;
D O I
10.1021/jacsau.4c01204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamic DNA nanostructures that reconfigure into different shapes are used in several applications in biosensing, drug delivery, and data storage. One of the ways to produce such structural transformations is by a process called strand displacement. This laboratory experiment demonstrates a strand displacement reaction in a two-stranded DNA nanostructure called switchback DNA by the addition of a third strand. In this process, the difference in the affinity between the component DNA strands is used to convert switchback DNA into conventional duplex DNA. Students are introduced to the concept through gel electrophoresis and quantitative analysis of DNA nanostructure reconfiguration. The experiment presented here is an example of DNA nanotechnology-based exercises in an undergraduate setting and is tailored for adaptation in a chemistry, biology, or biochemistry laboratory with minimal costs.
引用
收藏
页码:1069 / 1075
页数:7
相关论文
共 40 条
  • [21] Rational Design of pH-Controlled DNA Strand Displacement
    Amodio, Alessia
    Zhao, Bin
    Porchetta, Alessandro
    Idili, Andrea
    Castronovo, Matteo
    Fan, Chunhai
    Ricci, Francesco
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (47) : 16469 - 16472
  • [22] The Design of Digital Circuit Based on DNA Strand Displacement Reaction
    Wang, Zicheng
    Cai, Zijie
    Sun, Zhonghua
    Wang, Yanfeng
    Cui, Guangzhao
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015, 2015, 562 : 456 - 464
  • [23] A DNA Logic Model for Building Large-Scale Circuits Based on DNA Strand Displacement
    Wang, Zicheng
    Ai, Jian
    Wang, Yanfeng
    Meng, Hongbo
    Cui, Guangzhao
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (01) : 9 - 19
  • [24] Kinetics of heterochiral strand displacement from PNA-DNA heteroduplexes
    Kundu, Nandini
    Young, Brian E.
    Sczepanski, Jonathan T.
    NUCLEIC ACIDS RESEARCH, 2021, 49 (11) : 6114 - 6127
  • [25] Controllable DNA strand displacement by independent metal-ligand complexation
    Wang, Liang-Liang
    Zhang, Qiu-Long
    Wang, Yang
    Liu, Yan
    Lin, Jiao
    Xie, Fan
    Xu, Liang
    CHEMICAL SCIENCE, 2021,
  • [26] Self-Assembly of Designed Peptides with DNA to Accelerate the DNA Strand Displacement Process for Dynamic Regulation of DNAzymes
    Du, Ruikai
    Teng, Qiao
    Xu, Shichao
    Jiang, Minquan
    Irmisch, Patrick
    Wang, Zhen-Gang
    ACS NANO, 2023, 17 (24) : 24753 - 24762
  • [27] Sequential Strand Displacement Beacon for Detection of DNA Coverage on Functionalized Gold Nanoparticies
    Paliwoda, Rebecca E.
    Li, Feng
    Reid, Michael S.
    Lin, Yanwen
    Le, X. Chris
    ANALYTICAL CHEMISTRY, 2014, 86 (12) : 6138 - 6143
  • [28] Direct Comparison of D-DNA and L-DNA Strand-Displacement Reactions in Living Mammalian Cells
    Zhong, Wenrui
    Sczepanski, Jonathan T.
    ACS SYNTHETIC BIOLOGY, 2021, 10 (01): : 209 - 212
  • [29] Light-driven reversible strand displacement using glycerol azobenzene inserted DNA
    Kou, Bo
    Zhang, Jiaxiao
    Huai, Xu
    Liang, Xingguo
    Xiao, Shou-Jun
    RSC ADVANCES, 2015, 5 (07): : 5055 - 5058
  • [30] Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes
    Schaffter, Samuel W.
    Kengmana, Eli
    Fern, Joshua
    Byrne, Shane R.
    Schulman, Rebecca
    ACS SYNTHETIC BIOLOGY, 2024, 13 (07): : 1964 - 1977