DNA Nanotechnology in the Undergraduate Laboratory: Toehold-Less Strand Displacement in Switchback DNA

被引:0
|
作者
Madhanagopal, Bharath Raj [1 ]
Chandrasekaran, Arun Richard [1 ,2 ]
机构
[1] SUNY Albany, RNA Inst, Albany, NY 12222 USA
[2] SUNY Albany, Dept Nanoscale Sci & Engn, Albany, NY 12222 USA
来源
JACS AU | 2025年 / 5卷 / 02期
基金
美国国家卫生研究院;
关键词
Upper-division undergraduate; Biochemistry; Interdisciplinary/multidisciplinary; Hands-on learning/manipulatives; Electrophoresis; Molecular properties/structure; Nanotechnology; Nucleic acids/DNA/RNA; Undergraduateresearch; DNA nanotechnology;
D O I
10.1021/jacsau.4c01204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamic DNA nanostructures that reconfigure into different shapes are used in several applications in biosensing, drug delivery, and data storage. One of the ways to produce such structural transformations is by a process called strand displacement. This laboratory experiment demonstrates a strand displacement reaction in a two-stranded DNA nanostructure called switchback DNA by the addition of a third strand. In this process, the difference in the affinity between the component DNA strands is used to convert switchback DNA into conventional duplex DNA. Students are introduced to the concept through gel electrophoresis and quantitative analysis of DNA nanostructure reconfiguration. The experiment presented here is an example of DNA nanotechnology-based exercises in an undergraduate setting and is tailored for adaptation in a chemistry, biology, or biochemistry laboratory with minimal costs.
引用
收藏
页码:1069 / 1075
页数:7
相关论文
共 40 条
  • [1] DNA Nanotechnology in the Undergraduate Laboratory: Analysis of Molecular Topology Using DNA Nanoswitches
    Punnoose, Jibin Abraham
    Halvorsen, Ken
    Chandrasekaran, Arun Richard
    JOURNAL OF CHEMICAL EDUCATION, 2020, 97 (05) : 1448 - 1453
  • [2] DNA Nanotechnology in the Undergraduate Laboratory: Electrophoretic Analysis of DNA Nanostructure Biostability
    Chandrasekaran, Arun Richard
    JOURNAL OF CHEMICAL EDUCATION, 2023, 100 (01) : 316 - 320
  • [3] A Responsive Hidden Toehold To Enable Controllable DNA Strand Displacement Reactions
    Xing, Yongzheng
    Yang, Zhongqiang
    Liu, Dongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (50) : 11934 - 11936
  • [4] Dissipative Control over the Toehold-Mediated DNA Strand Displacement Reaction
    Del Grosso, Erica
    Irmisch, Patrick
    Gentile, Serena
    Prins, Leonard J.
    Seidel, Ralf
    Ricci, Francesco
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)
  • [5] Accelerating Toehold-Mediated DNA Strand Displacement Reaction using Polyquaternium
    Liu, Junlan
    Zhang, Qing
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [6] CRISPR-Mediated Strand Displacement Logic Circuits with Toehold-Free DNA
    Montagud-Martinez, Roser
    Heras-Hernandez, Maria
    Goiriz, Lucas
    Daros, Jose-Antonio
    Rodrigo, Guillermo
    ACS SYNTHETIC BIOLOGY, 2021, 10 (05): : 950 - 956
  • [7] A novel electrochemical biosensor for HIV-related DNA detection based on toehold strand displacement reaction and cruciform DNA crystal
    Hun, Yushu
    Li, Hongwei
    Li, Jianbo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 822 : 66 - 72
  • [8] Hierarchical Assembly of DNA Nanostructures Based on Four-Way Toehold-Mediated Strand Displacement
    Lin, Tong
    Yan, Jun
    Ong, Luvena L.
    Robaszewski, Joanna
    Lu, Hoang D.
    Mi, Yongli
    Yin, Peng
    Wei, Bryan
    NANO LETTERS, 2018, 18 (08) : 4791 - 4795
  • [9] Predicting DNA toehold-mediated strand displacement rate constants using a DNA-BERT transformer deep learning model
    Akay, Ali
    Reddy, Hemaprakash Nanja
    Galloway, Roma
    Kozyra, Jerzy
    Jackson, Alexander W.
    HELIYON, 2024, 10 (07)
  • [10] Robustness of Localized DNA Strand Displacement Cascades
    Teichmann, Mario
    Kopperger, Enzo
    Simmel, Friedrich C.
    ACS NANO, 2014, 8 (08) : 8487 - 8496