Electrochemical Grain Refinement Enables High-Performance Lithium-Aluminum-Anode-Based All-Solid-State Batteries

被引:0
作者
Zhang, Lun [1 ]
Zhang, Xuedong [1 ]
Guo, Baiyu [2 ]
Rong, Zhaoyu [2 ]
Yan, Zhihao [1 ]
Wang, Bo [2 ]
Li, Menglin [1 ]
Wang, Zhenyu [3 ]
Zhu, Lingyun [4 ]
Huang, Qiao [1 ]
Tang, Yongfu [2 ,5 ,6 ]
Huang, Jianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] Guilin Elect Equipment Sci Res Inst Co Ltd, Guilin 541004, Peoples R China
[4] Anhui Univ, Sch Mat Sci & Engn, Hefei 230601, Peoples R China
[5] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol MMST, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
[6] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
来源
ACS ENERGY LETTERS | 2025年
基金
中国国家自然科学基金;
关键词
LITHIATION;
D O I
10.1021/acsenergylett.4c03250
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-aluminum (Li x Al, x = the molar ratio of Li to Al), an important alloy anode with a specific capacity over 2 times higher than that of the carbon anode used in commercial liquid electrolyte lithium-ion batteries (LELIBs), has been proven to be a failure in LELIBs due to the notorious pulverization phenomenon. However, whether or not such pulverization persists in all solid state lithium batteries (ASSLBs) remains unclear. Herein, we show that pulverization of the Li x Al anode is mitigated in ASSLBs due to the applied external stack pressure, thus preventing the mechanical failure of the Li x Al anode in ASSLBs. Moreover, electron microscopy investigation reveals that, instead of pulverization, electrochemomechanical stress induces 2 orders of magnitude grain size reduction from a few tens of microns to a few hundred nanometers. The grain-refined Li x Al anode facilitates lithium ion transport, which improves the rate performance and specific capacity of the Li x Al anode. Consequently, the assembled single-crystal LiNi0.83Co0.12Mn0.05O2|Li10Si0.3PS6.7Cl1.8|Li0.4Al ASSLBs reach 2000 cycles with a capacity retention of 100% at 3C (13.9 mA/cm2, room temperature), at a high areal capacity of 2.1 mAh/cm2. The all-solid pouch cell with a Li x Al anode can reach an energy density of 219 Wh kg-1 based on the total mass of the cell. These results demonstrate the prospect of implementing the Al-based anode in ASSLBs for practical energy storage applications.
引用
收藏
页码:898 / 906
页数:9
相关论文
共 46 条
  • [1] A Robust Li-Intercalated Interlayer withStrong Electron Withdrawing Ability EnablesDurable and High-Rate Li Metal Anode
    Chen, Jiahe
    Li, Zhendong
    Sun, Nannan
    Xu, Jinting
    Li, Qian
    Yao, Xiayin
    Ming, Jun
    Peng, Zhe
    [J]. ACS ENERGY LETTERS, 2022, 7 (05) : 1594 - 1603
  • [2] The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium
    Chen, Rusong
    Nolan, Adelaide M.
    Lu, Jiaze
    Wang, Junyang
    Yu, Xiqian
    Mo, Yifei
    Chen, Liquan
    Huang, Xuejie
    Li, Hong
    [J]. JOULE, 2020, 4 (04) : 812 - 821
  • [3] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [4] In Situ Constructed 3D Lithium Anodes for Long-Cycling All-Solid-State Batteries
    Duan, Hui
    Wang, Changhong
    Yu, Ruizhi
    Li, Weihan
    Fu, Jiamin
    Yang, Xiaofei
    Lin, Xiaoting
    Zheng, Matthew
    Li, Xiaona
    Deng, Sixu
    Hao, Xiaoge
    Li, Ruying
    Wang, Jiantao
    Huang, Huan
    Sun, Xueliang
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (24)
  • [5] Air-Stable LixAl Foil as Free-Standing Electrode with Improved Electrochemical Ductility by Shot-Peening Treatment
    Fan, Huimin
    Li, Sa
    Yu, Yue
    Xu, Hui
    Jiang, Mengwen
    Huang, Yunhui
    Li, Ju
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (29)
  • [6] Long-Cycling All-Solid-State Batteries Achieved by 2D Interface between Prelithiated Aluminum Foil Anode and Sulfide Electrolyte
    Fan, Zengjie
    Ding, Bing
    Li, Zhiwei
    Hu, Ben
    Xu, Chong
    Xu, Chengyang
    Dou, Hui
    Zhang, Xiaogang
    [J]. SMALL, 2022, 18 (44)
  • [7] Solid-state lithium battery cathodes operating at low pressures
    Gao, Xiangwen
    Liu, Boyang
    Hu, Bingkun
    Ning, Ziyang
    Jolly, Dominic Spencer
    Zhang, Shengming
    Perera, Johann
    Bu, Junfu
    Liu, Junliang
    Doerrer, Christopher
    Darnbrough, Ed
    Armstrong, David
    Grant, Patrick S.
    Bruce, Peter G.
    [J]. JOULE, 2022, 6 (03) : 636 - 646
  • [8] Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries
    Ham, So-Yeon
    Sebti, Elias
    Cronk, Ashley
    Pennebaker, Tyler
    Deysher, Grayson
    Chen, Yu-Ting
    Oh, Jin An Sam
    Lee, Jeong Beom
    Song, Min Sang
    Ridley, Phillip
    Tan, Darren H. S.
    Clement, Raphaele J.
    Jang, Jihyun
    Meng, Ying Shirley
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] Porous Metals from Chemical Dealloying for Solid-State Battery Anodes
    Han, Sang Yun
    Lewis, John A.
    Shetty, Pralav P.
    Tippens, Jared
    Yeh, David
    Marchese, Thomas S.
    McDowell, Matthew T.
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (06) : 2461 - 2469
  • [10] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    [J]. ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672