Electrochemical Grain Refinement Enables High-Performance Lithium-Aluminum-Anode-Based All-Solid-State Batteries

被引:0
作者
Zhang, Lun [1 ]
Zhang, Xuedong [1 ]
Guo, Baiyu [2 ]
Rong, Zhaoyu [2 ]
Yan, Zhihao [1 ]
Wang, Bo [2 ]
Li, Menglin [1 ]
Wang, Zhenyu [3 ]
Zhu, Lingyun [4 ]
Huang, Qiao [1 ]
Tang, Yongfu [2 ,5 ,6 ]
Huang, Jianyu [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] Guilin Elect Equipment Sci Res Inst Co Ltd, Guilin 541004, Peoples R China
[4] Anhui Univ, Sch Mat Sci & Engn, Hefei 230601, Peoples R China
[5] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol MMST, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
[6] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIATION;
D O I
10.1021/acsenergylett.4c03250
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-aluminum (Li x Al, x = the molar ratio of Li to Al), an important alloy anode with a specific capacity over 2 times higher than that of the carbon anode used in commercial liquid electrolyte lithium-ion batteries (LELIBs), has been proven to be a failure in LELIBs due to the notorious pulverization phenomenon. However, whether or not such pulverization persists in all solid state lithium batteries (ASSLBs) remains unclear. Herein, we show that pulverization of the Li x Al anode is mitigated in ASSLBs due to the applied external stack pressure, thus preventing the mechanical failure of the Li x Al anode in ASSLBs. Moreover, electron microscopy investigation reveals that, instead of pulverization, electrochemomechanical stress induces 2 orders of magnitude grain size reduction from a few tens of microns to a few hundred nanometers. The grain-refined Li x Al anode facilitates lithium ion transport, which improves the rate performance and specific capacity of the Li x Al anode. Consequently, the assembled single-crystal LiNi0.83Co0.12Mn0.05O2|Li10Si0.3PS6.7Cl1.8|Li0.4Al ASSLBs reach 2000 cycles with a capacity retention of 100% at 3C (13.9 mA/cm2, room temperature), at a high areal capacity of 2.1 mAh/cm2. The all-solid pouch cell with a Li x Al anode can reach an energy density of 219 Wh kg-1 based on the total mass of the cell. These results demonstrate the prospect of implementing the Al-based anode in ASSLBs for practical energy storage applications.
引用
收藏
页码:898 / 906
页数:9
相关论文
共 46 条
[1]   A Robust Li-Intercalated Interlayer withStrong Electron Withdrawing Ability EnablesDurable and High-Rate Li Metal Anode [J].
Chen, Jiahe ;
Li, Zhendong ;
Sun, Nannan ;
Xu, Jinting ;
Li, Qian ;
Yao, Xiayin ;
Ming, Jun ;
Peng, Zhe .
ACS ENERGY LETTERS, 2022, 7 (05) :1594-1603
[2]   The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium [J].
Chen, Rusong ;
Nolan, Adelaide M. ;
Lu, Jiaze ;
Wang, Junyang ;
Yu, Xiqian ;
Mo, Yifei ;
Chen, Liquan ;
Huang, Xuejie ;
Li, Hong .
JOULE, 2020, 4 (04) :812-821
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   In Situ Constructed 3D Lithium Anodes for Long-Cycling All-Solid-State Batteries [J].
Duan, Hui ;
Wang, Changhong ;
Yu, Ruizhi ;
Li, Weihan ;
Fu, Jiamin ;
Yang, Xiaofei ;
Lin, Xiaoting ;
Zheng, Matthew ;
Li, Xiaona ;
Deng, Sixu ;
Hao, Xiaoge ;
Li, Ruying ;
Wang, Jiantao ;
Huang, Huan ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2023, 13 (24)
[5]   Air-Stable LixAl Foil as Free-Standing Electrode with Improved Electrochemical Ductility by Shot-Peening Treatment [J].
Fan, Huimin ;
Li, Sa ;
Yu, Yue ;
Xu, Hui ;
Jiang, Mengwen ;
Huang, Yunhui ;
Li, Ju .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (29)
[6]   Long-Cycling All-Solid-State Batteries Achieved by 2D Interface between Prelithiated Aluminum Foil Anode and Sulfide Electrolyte [J].
Fan, Zengjie ;
Ding, Bing ;
Li, Zhiwei ;
Hu, Ben ;
Xu, Chong ;
Xu, Chengyang ;
Dou, Hui ;
Zhang, Xiaogang .
SMALL, 2022, 18 (44)
[7]   Solid-state lithium battery cathodes operating at low pressures [J].
Gao, Xiangwen ;
Liu, Boyang ;
Hu, Bingkun ;
Ning, Ziyang ;
Jolly, Dominic Spencer ;
Zhang, Shengming ;
Perera, Johann ;
Bu, Junfu ;
Liu, Junliang ;
Doerrer, Christopher ;
Darnbrough, Ed ;
Armstrong, David ;
Grant, Patrick S. ;
Bruce, Peter G. .
JOULE, 2022, 6 (03) :636-646
[8]   Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries [J].
Ham, So-Yeon ;
Sebti, Elias ;
Cronk, Ashley ;
Pennebaker, Tyler ;
Deysher, Grayson ;
Chen, Yu-Ting ;
Oh, Jin An Sam ;
Lee, Jeong Beom ;
Song, Min Sang ;
Ridley, Phillip ;
Tan, Darren H. S. ;
Clement, Raphaele J. ;
Jang, Jihyun ;
Meng, Ying Shirley .
NATURE COMMUNICATIONS, 2024, 15 (01)
[9]   Porous Metals from Chemical Dealloying for Solid-State Battery Anodes [J].
Han, Sang Yun ;
Lewis, John A. ;
Shetty, Pralav P. ;
Tippens, Jared ;
Yeh, David ;
Marchese, Thomas S. ;
McDowell, Matthew T. .
CHEMISTRY OF MATERIALS, 2020, 32 (06) :2461-2469
[10]   Elemental Foil Anodes for Lithium-Ion Batteries [J].
Heligman, Brian T. ;
Manthiram, Arumugam .
ACS ENERGY LETTERS, 2021, 6 (08) :2666-2672