Computational analysis of MHD flow in a porous open chamber filled with hybrid nanofluid and vertical heat sources

被引:1
作者
Gokulavani, P. [1 ]
Muthukumar, S. [2 ]
Sureshkumar, S. [3 ]
Muthtamilselvan, M. [1 ]
Al-Mdallal, Qasem M. [4 ]
机构
[1] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
[2] KS Rangasamy Coll Technol, Dept Math, Tiruchengode 637215, Tamil Nadu, India
[3] Kongu Engn Coll, Dept Math, Perundurai 638060, Tamil Nadu, India
[4] United Arab Emirates Univ, Dept Math Sci, POB 15551, Al Ain, Abu Dhabi, U Arab Emirates
关键词
Convection; Heated baffles; Numerical simulation; Open cavity; Porous medium; Hybrid nanofluid; Magnetic field; NATURAL-CONVECTION; MIXED CONVECTION; NUMERICAL-SIMULATION; HORIZONTAL CHANNEL; WATER NANOFLUID; MAGNETIC-FIELD; OPEN CAVITY; ENCLOSURE;
D O I
10.1007/s10973-024-13892-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present study focuses on the heat transfer within a ventilated porous enclosure saturated with a hybrid nanofluid, with the added influence of a magnetic field. The working hybrid nanofluid used in the study is consisting of copper and alumina nanoparticles suspended in water. This research covers two different types of geometries based on their opening ports. The cavity contains two vertical heating baffles placed near the inlet and outlet ports. The objective of this research is to understand how the presence of these heated obstacles, along with the distinct properties of the hybrid nanofluid and porous medium in the existence of magnetic field, influence the heat transfer and flow patterns within the cavity. The discretized governing equations are solved using finite difference method along with the boundary conditions. Irrespective of various parameters such as Solid volume fraction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}), Darcy number (Da), Hartmann number (Ha), length of heating baffles (hb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\textrm{b}}$$\end{document}) and Rayleigh number (Ra), configuration BT consistently demonstrates higher heat transfer. The heat transfer near the heated baffle is maximized when Ra=103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Ra}=10<^>3$$\end{document} and Da=10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Da}=10<^>{-4}$$\end{document} in configuration BT. For Ra=103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Ra}=10<^>3$$\end{document} and 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>4$$\end{document} in configuration BT, the highest heat transfer along the right sidewall is achieved with 25%; while, hb=35%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\textrm{b}}=35\%$$\end{document} is optimal at Ra=105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{Ra}=10<^>5$$\end{document}. The findings derived from this investigation hold significant relevance for a multitude of engineering domains, encompassing energy systems, heat exchangers, and the extraction of geothermal energy.
引用
收藏
页码:3621 / 3636
页数:16
相关论文
共 37 条
  • [1] NUMERICAL-SIMULATION OF THE BUOYANCY-INDUCED FLOW IN A PARTIALLY OPEN ENCLOSURE
    ABIB, AH
    JALURIA, Y
    [J]. NUMERICAL HEAT TRANSFER, 1988, 14 (02): : 235 - 254
  • [2] Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block
    Alsabery, Ammar I.
    Tayebi, Tahar
    Kadhim, Hakim T.
    Ghalambaz, Mohammad
    Hashim, Ishak
    Chamkha, Ali J.
    [J]. JOURNAL OF ADVANCED RESEARCH, 2021, 30 : 63 - 74
  • [3] MHD natural convection of hybrid nanofluid in an open wavy cavity
    Ashorynejad, Hamid Reza
    Shahriari, Alireza
    [J]. RESULTS IN PHYSICS, 2018, 9 : 440 - 455
  • [4] Experiments on mixed convection in a vented differentially side-heated cavity filled with a coarse porous medium
    Ataei-Dadavi, Iman
    Chakkingal, Manu
    Kenjeres, Sasa
    Kleijn, Chris R.
    Tummers, Mark J.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 149
  • [5] Mixed Convection in a Two-Sided and Four-Sided Lid-Driven Square Porous Cavity
    Bagai, Shobha
    Kumar, Manoj
    Patel, Arvind
    [J]. INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (03) : 711 - 726
  • [6] Natural convection in a square cavity filled with a porous medium: Effects of various thermal boundary conditions
    Basak, T
    Roy, S
    Paul, T
    Pop, I
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (7-8) : 1430 - 1441
  • [7] Choi S. U., 1995, ENHANCING THERMAL CO
  • [8] Numerical Analysis of Fluid Flow and Heat Transfer in Entrance and Fully Developed Regions of a Channel With Porous Baffles
    Davari, Amin
    Maerefat, Mehdi
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2016, 138 (06):
  • [9] ERGUN S, 1952, CHEM ENG PROG, V48, P89
  • [10] Franco AT, 2013, ASME INT MECH ENG C, V56369