Dispersiveness, higher stability and controllability of linear control systems on the Heisenberg group

被引:0
作者
Souza, Josiney A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
关键词
Linear control system; Heisenberg group; Dispersiveness; Absolute stability; Controllability; CONTROL AFFINE SYSTEMS; LYAPUNOV STABILITY; NILPOTENT;
D O I
10.1007/s00498-024-00401-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents sufficient conditions for dispersiveness of linear control systemns on the Heisenberg group. The dispersiveness implies the absolute stability of the orbits, which means stability of all orders. Necessary conditions for the existence of a control set are derived. A linear control system is determined by a derivation D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} of the Heisenberg algebra h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}$$\end{document} and invariant vector fields X1,& mldr;,Xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{1},\ldots ,X_{m}$$\end{document}. The main result assures that the system is dispersive with respect to a compact set K in the control range, if the mean limits limtn ->+infinity 1tn integral 0tn & sum;i=1muinsXids\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\lim }\limits _{{t_{n} \rightarrow + \infty }} \frac{1}{{t_{n} }}\int _{0}<^>{{t_{n} }} {\sum \nolimits _{{i = 1}}<^>{m} {u_{i}<^>{n} \left( s \right) X_{i} {\hspace{1.0pt}} ds} } $$\end{document} do not reach the subspace h2+ImD subset of h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}<^>{2}+\textrm{Im}\left( {\mathcal {D}}\right) \subset {\mathfrak {h}}$$\end{document}. Consequently, the system is K-dispersive, if 0 is not an element of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\notin K$$\end{document} and the sum h2+ImD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}<^>{2}+\textrm{Im}\left( {\mathcal {D}}\right) $$\end{document} meets SpanX1,& mldr;,Xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Span\left\{ X_{1},\ldots ,X_{m}\right\} $$\end{document} trivially. The mean limit criterion is applied to the linear Heisenberg flywheel and other three-dimensional systems.
引用
收藏
页码:279 / 304
页数:26
相关论文
共 27 条
[1]  
Ayala V, 2000, LECT NOTES CONTR INF, V258, P83
[2]  
Ayala V, 1999, LINEAR CONTROL SYSTE
[3]  
Ayala V., 1995, GEOMETRY NONLINEAR C, V32, P35, DOI DOI 10.4064/BC106-0-3
[4]   Control sets of linear systems on Lie groups [J].
Ayala, Victor ;
Da Silva, Adriano ;
Zsigmond, Guilherme .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (01)
[5]   Control systems on nilpotent Lie groups of dimension ≤ 4: Equivalence and classification [J].
Bartlett, Catherine E. ;
Biggs, Rory ;
Remsing, Claudiu C. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 :282-297
[6]  
Binz E., 2008, GEOMETRY HEISENBERG, DOI [10.1090/surv/151, DOI 10.1090/SURV/151]
[7]   Lyapunov stability on fiber bundles [J].
Braga Barros, Carlos J. ;
Souza, Josiney A. ;
Rocha, Victor H. L. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (02) :181-204
[8]  
Brockett R .W., 1981, New Directions in Applied Mathematics
[9]  
Colonius F., 2000, DYNAM CONTROL, DOI 10.1007/978-1-4612-1350-5
[10]   CONTROLLABILITY OF LINEAR SYSTEMS ON SOLVABLE LIE GROUPS [J].
Da Silva, Adriano .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) :372-390