Dynamics of the Non-radial Energy-critical Inhomogeneous NLS

被引:0
作者
Guzman, Carlos M. [1 ]
Xu, Chengbin [2 ]
机构
[1] Fed Fluminense Univ, Dept Math, Niteroi, Brazil
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
关键词
Inhomogeneous nonlinear Schr & ouml; dinger equation; Global well-posedness; Scattering; 35QA55; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP; SCATTERING;
D O I
10.1007/s11118-024-10183-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the focusing inhomogeneous nonlinear Schr & ouml;dinger equation i partial derivative tu+Delta u+|x|-b|u|alpha u=0onRxRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\partial _t u + \Delta u + |x|<^>{-b}|u|<^>\alpha u = 0\quad \text {on}\quad \mathbb {R}\times \mathbb {R}<^>N, \end{aligned}$$\end{document}with alpha=4-2bN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\frac{4-2b}{N-2}$$\end{document}, N={3,4,5}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=\{3,4,5\}$$\end{document} and 01(\mathbb {R}<^>N)$$\end{document}. It extends the previous research by Murphy and the first author Guzm & aacute;n and Murphy (J. Diff. Equ. 295, 187-210, 2021), which focused on the case (N,alpha,b)=(3,2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,\alpha ,b)=(3,2,1)$$\end{document}. The novelty here, beyond considering higher dimensions, lies in our assumption of the condition supt is an element of I & Vert;del u(t)& Vert;L2<& Vert;del Q & Vert;L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup _{t\in I}\Vert \nabla u(t)\Vert _{L<^>2}<\Vert \nabla Q\Vert _{L<^>2}$$\end{document}, which is weaker than the condition stated in Guzm & aacute;n (Nonlinear Anal. Real World Appl. 37, 249-286, 2017). Consequently, if a solution has energy and kinetic energy less than the ground state Q at some point, then the solution is global and scatters. Moreover, we show scattering for the defocusing case. On the other hand, in this work, we also investigate the blow-up issue with nonradial data for N >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document} in H1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(\mathbb {R}<^>N)$$\end{document}. This implies that our result holds without classical assumptions such as spherically symmetric data or |x|u0 is an element of L2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|u_0 \in L<^>2(\mathbb {R}<^>N)$$\end{document}.
引用
收藏
页数:30
相关论文
共 25 条
[11]   Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (08) :4175-4231
[12]   Inhomogeneous Strichartz estimates [J].
Foschi, D .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :1-24
[13]  
Genoud F, 2008, DISCRETE CONT DYN-A, V21, P137
[14]   Scattering for the non-radial energy-critical inhomogeneous NLS [J].
Guzman, Carlos M. ;
Murphy, Jason .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :187-210
[15]   On well posedness for the inhomogeneous nonlinear Schrodinger equation [J].
Guzman, Carlos M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :249-286
[16]  
Kato Tosio, 1994, Adv. Stud. Pure Math., V23, P223, DOI [10.2969/aspm/02310223, DOI 10.2969/ASPM/02310223]
[17]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675
[18]   On the defect of compactness for the Strichartz estimates of the Schrodinger equations [J].
Keraani, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :353-392
[19]  
Killip R., 2013, EVOLUTION EQUATIONS, V17, P325
[20]   THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL [J].
Killip, Rowan ;
Miao, Changxing ;
Visan, Monica ;
Zhang, Junyong ;
Zheng, Jiqiang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) :3831-3866