Dynamics of the Non-radial Energy-critical Inhomogeneous NLS

被引:0
作者
Guzman, Carlos M. [1 ]
Xu, Chengbin [2 ]
机构
[1] Fed Fluminense Univ, Dept Math, Niteroi, Brazil
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
关键词
Inhomogeneous nonlinear Schr & ouml; dinger equation; Global well-posedness; Scattering; 35QA55; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP; SCATTERING;
D O I
10.1007/s11118-024-10183-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the focusing inhomogeneous nonlinear Schr & ouml;dinger equation i partial derivative tu+Delta u+|x|-b|u|alpha u=0onRxRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\partial _t u + \Delta u + |x|<^>{-b}|u|<^>\alpha u = 0\quad \text {on}\quad \mathbb {R}\times \mathbb {R}<^>N, \end{aligned}$$\end{document}with alpha=4-2bN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\frac{4-2b}{N-2}$$\end{document}, N={3,4,5}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=\{3,4,5\}$$\end{document} and 01(\mathbb {R}<^>N)$$\end{document}. It extends the previous research by Murphy and the first author Guzm & aacute;n and Murphy (J. Diff. Equ. 295, 187-210, 2021), which focused on the case (N,alpha,b)=(3,2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,\alpha ,b)=(3,2,1)$$\end{document}. The novelty here, beyond considering higher dimensions, lies in our assumption of the condition supt is an element of I & Vert;del u(t)& Vert;L2<& Vert;del Q & Vert;L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup _{t\in I}\Vert \nabla u(t)\Vert _{L<^>2}<\Vert \nabla Q\Vert _{L<^>2}$$\end{document}, which is weaker than the condition stated in Guzm & aacute;n (Nonlinear Anal. Real World Appl. 37, 249-286, 2017). Consequently, if a solution has energy and kinetic energy less than the ground state Q at some point, then the solution is global and scatters. Moreover, we show scattering for the defocusing case. On the other hand, in this work, we also investigate the blow-up issue with nonradial data for N >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document} in H1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1(\mathbb {R}<^>N)$$\end{document}. This implies that our result holds without classical assumptions such as spherically symmetric data or |x|u0 is an element of L2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|u_0 \in L<^>2(\mathbb {R}<^>N)$$\end{document}.
引用
收藏
页数:30
相关论文
共 25 条
[1]   Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation [J].
Campos, Luccas .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[2]   Scattering below the ground state for the intercritical non-radial inhomogeneous NLS [J].
Cardoso, Mykael ;
Farah, Luiz Gustavo ;
Guzman, Carlos M. ;
Murphy, Jason .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
[3]   On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation [J].
Cardoso, Mykael ;
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) :1337-1367
[4]  
CAZENAVE T., 2003, Courant Lect. Notes Math., V10
[5]   On the focusing energy-critical inhomogeneous NLS: Weighted space approach [J].
Cho, Yonggeun ;
Lee, Kiyeon .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
[6]   On the global well-posedness of focusing energy-critical inhomogeneous NLSy [J].
Cho, Yonggeun ;
Hong, Seokchang ;
Lee, Kiyeon .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) :1349-1380
[7]   GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE FOCUSING, CUBIC SCHRODINGER EQUATION IN DIMENSION d=4 [J].
Dodson, Benjamin .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (01) :139-180
[8]  
Dongjin P., 2024, J. Math. Anal. Appl, V536, P128
[9]   Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz G. .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) :193-208
[10]   Scattering for the Radial Focusing Inhomogeneous NLS Equation in Higher Dimensions [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02) :449-512