The multiplicative Lie algebra on general linear groups

被引:0
作者
Kumar, Akshay [1 ]
Kushwaha, Seema [1 ]
Upadhyay, Sumit Kumar [1 ]
机构
[1] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj, India
关键词
Multiplicative Lie algebra; general linear group; action; linear representation;
D O I
10.1515/gmj-2024-2059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study an obvious linear representation of a multiplicative Lie algebra. Also, we find some criteria to determine all possible multiplicative Lie algebra structures on a general linear group and we show that the general linear group on a finite field is a Lie simple group.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 7 条
[1]   Homology of multiplicative Lie rings [J].
Bak, A. ;
Donadze, G. ;
Inassaridze, N. ;
Ladra, M. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (02) :761-777
[2]   ON 5 WELL-KNOWN COMMUTATOR IDENTITIES [J].
ELLIS, GJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 54 :1-19
[3]  
Kumar A, 2024, J LIE THEORY, V34, P423
[4]   Multiplicative Lie algebras and Schur multiplier [J].
Lal, Ramji ;
Upadhyay, Sumit Kumar .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) :3695-3721
[5]   CLASSIFICATION OF MULTIPLICATIVE LIE ALGEBRA STRUCTURES ON A FINITE GROUP [J].
Pandey, Mani Shankar ;
Upadhyay, Sumit Kumar .
COLLOQUIUM MATHEMATICUM, 2022, 168 (01) :25-34
[6]   Lie commutator, solvability and nilpotency in multiplicative Lie algebras [J].
Pandey, Mani Shankar ;
Lal, Ramji ;
Upadhyay, Sumit Kumar .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (08)
[7]   Nilpotency criteria for multiplicative Lie algebras [J].
Point, F ;
Wantiez, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 111 (1-3) :229-243