Automated Microfluidic Platform for High-Throughput Biosensor Development

被引:0
作者
Devrani, Shitanshu [1 ]
Tietze, Daniel [1 ]
Tietze, Alesia A. [1 ,2 ]
机构
[1] Univ Gothenburg, Wallenberg Ctr Mol & Translat Med, Dept Chem & Mol Biol, Medicinaregatan 7B, S-41390 Gothenburg, Sweden
[2] Univ Gothenburg, Wallenberg Ctr Mol & Translat Med, Gothenburg, Sweden
来源
ADVANCED SENSOR RESEARCH | 2025年 / 4卷 / 03期
基金
瑞典研究理事会;
关键词
automated platform; biosensor; high-throughput screening platform; microfluidics; nanopore membranes; PLASMONIC BIOSENSOR; NANOFLUIDIC DIODE; PEPTIDES; BINDING; SYSTEMS; IONS; FLUORESCENCE; COPPER(II); GEOMETRY; SENSORS;
D O I
10.1002/adsr.202400116
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Biorecognition elements immobilized into nanopores have transformed point-of-care (POC) diagnostics by converting molecular interactions into electrical and fluorescent signals.This study introduces Bio-Sensei, a high-throughput screening (HTS) microfluidic platform based on nanopore biosensing. Integrating a robotic sampler, electrochemical, and fluorescence setup, Bio-Sensei operates as an Internet of Things (IoT) platform with integrated data analysis. The platform's utility is demonstrated on functionalized with an amino terminal Cu(II)- and Ni(II)-binding (ATCUN) peptide ion track-etched membrane. Automated testing atchieves a significantly higher F-stat value than the critical treshold, while unsupervised clustering reveals optimalnanopores pore size. The biosensordemonstrates remarkable stability, selectivity, and sensitivity with detection limits of 10-6 using fluorescence and 10-15 Musing cyclic voltammetry measurements. Combining these methods enhances machine learning models for Cu2+ concentration prediction, achieving receiver operating characteristic area under the curve values exceeding 95%.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Robo-Lector - a novel platform for automated high-throughput cultivations in microtiter plates with high information content
    Huber, Robert
    Ritter, Daniel
    Hering, Till
    Hillmer, Anne-Kathrin
    Kensy, Frank
    Mueller, Carsten
    Wang, Le
    Buechs, Jochen
    MICROBIAL CELL FACTORIES, 2009, 8
  • [32] Construction and Application of a High-Throughput In Vivo Screening Platform for the Evolution of Nitrile Metabolism-Related Enzymes Based on a Desensitized Repressive Biosensor
    Han, Laichuang
    Liu, Xinyue
    Cheng, Zhongyi
    Cui, Wenjing
    Guo, Junling
    Yin, Jian
    Zhou, Zhemin
    ACS SYNTHETIC BIOLOGY, 2022, 11 (04): : 1577 - 1587
  • [33] Characterization of a microfluidic magnetic bead separator for high-throughput applications
    Bu, Minqiang
    Christensen, Troels B.
    Smistrup, Kristian
    Wolff, Anders
    Hansen, Mikkel F.
    SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 : 430 - 436
  • [34] High-throughput microfluidic sample introduction in the nanoliter to picoliter range
    Fang, Qun
    Du, Wen-Bin
    He, Qiao-Hong
    Liu, Jun
    Zhang, Ting
    Fang, Zhao-Lun
    PROCEEDINGS OF THE FIRST SHENYANG INTERNATIONAL COLLOQUIUM ON MICROFLUIDICS, 2007, : 8 - 9
  • [35] A high-throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell-based assays
    Kasper, Stephen H.
    Otten, Stephanie
    Squadroni, Brian
    Orr-Terry, Cionna
    Kuang, Yi
    Mussallem, Lily
    Ge, Lan
    Yan, Lin
    Kannan, Srinivasaraghavan
    Verma, Chandra S.
    Brown, Christopher J.
    Johannes, Charles W.
    Lane, David P.
    Chandramohan, Arun
    Partridge, Anthony W.
    Roberts, Lee R.
    Josien, Hubert
    Therien, Alex G.
    Hett, Erik C.
    Howell, Bonnie J.
    Peier, Andrea
    Ai, Xi
    Cassaday, Jason
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2023, 8 (05)
  • [36] A high-throughput drop microfluidic system for virus culture and analysis
    Fischer, Audrey E.
    Wu, Susan K.
    Proescher, Jody B. G.
    Rotem, Assaf
    Chang, Connie B.
    Zhang, Huidan
    Tao, Ye
    Mehoke, Thomas S.
    Thielen, Peter M.
    Kolawole, Abimbola O.
    Smith, Thomas J.
    Wobus, Christiane E.
    Weitz, David A.
    Lin, Jeffrey S.
    Feldman, Andrew B.
    Wolfe, Joshua T.
    JOURNAL OF VIROLOGICAL METHODS, 2015, 213 : 111 - 117
  • [37] High-throughput immunoassay through in-channel microfluidic patterning
    Zheng, Chunhong
    Wang, Jingwen
    Pang, Yuhong
    Wang, Jianbin
    Li, Wenbin
    Ge, Zigang
    Huang, Yanyi
    LAB ON A CHIP, 2012, 12 (14) : 2487 - 2490
  • [38] Microfluidic-based high-throughput optical trapping of nanoparticles
    Kotnala, Abhay
    Zheng, Yi
    Fu, Jianping
    Cheng, Wei
    LAB ON A CHIP, 2017, 17 (12) : 2125 - 2134
  • [39] High-Throughput Microfluidic Device for LAMP Analysis of Airborne Bacteria
    Jiang, Xiran
    Jing, Wenwen
    Sun, Xiaoting
    Liu, Qi
    Yang, Chunguang
    Liu, Sixiu
    Qin, Kairong
    Sui, Guodong
    ACS SENSORS, 2016, 1 (07): : 958 - 962
  • [40] High-Throughput Incubation and Quantification of Agglutination Assays in a Microfluidic System
    Castro, David
    Conchouso, David
    Kodzius, Rimantas
    Arevalo, Arpys
    Foulds, Ian G.
    GENES, 2018, 9 (06):