TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography

被引:0
作者
Chen, Yuqian [1 ]
Zhang, Fan [2 ]
Wang, Meng [3 ]
Zekelman, Leo R. [4 ]
Cetin-Karayumak, Suheyla [5 ]
Xue, Tengfei [6 ]
Zhang, Chaoyi [6 ]
Song, Yang [7 ]
Rushmore, Jarrett [8 ,9 ]
Makris, Nikos [10 ,11 ]
Rathi, Yogesh [5 ]
Cai, Weidong [6 ]
O'Donnell, Lauren J. [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[3] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, Boston, MA USA
[6] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[7] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[8] Boston Univ, Sch Med, Dept Anat, Boston, MA USA
[9] Boston Univ, Sch Med, Dept Neurobiol, Boston, MA USA
[10] Harvard Med Sch, Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[11] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA USA
基金
美国国家卫生研究院;
关键词
Sex classification; Age prediction; White matter tracts; Graph CNN; Transformer; dMRI tractography; Deep learning; WHITE-MATTER; STRUCTURAL CONNECTIVITY; BRAIN NETWORKS; CHILDHOOD; ADOLESCENCE; CONNECTOME;
D O I
10.1016/j.media.2025.103476
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography. This model leverages local anatomical characteristics and global feature dependencies of white matter structures. The Graph CNN module captures white matter geometry and grey matter connectivity to aggregate local features from anatomically similar white matter connections, while the Transformer module uses self-attention to enhance global information learning. Additionally, TractGraphFormer includes an attention module for interpreting predictive white matter connections. We apply TractGraphFormer to tasks of sex and age prediction. TractGraphFormer shows strong performance in large datasets of children (n = 9345) and young adults (n = 1065). Overall, our approach suggests that widespread connections in the WM are predictive of the sex and age of an individual. For each prediction task, consistent predictive anatomical tracts are identified across the two datasets. The proposed approach highlights the potential of integrating local anatomical information and global feature dependencies to improve prediction performance in machine learning with diffusion MRI tractography.
引用
收藏
页数:14
相关论文
共 109 条
  • [1] Astolfi Pietro, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12267), P291, DOI 10.1007/978-3-030-59728-3_29
  • [2] Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers
    Berrar, Daniel
    [J]. MACHINE LEARNING, 2017, 106 (06) : 911 - 949
  • [3] Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging
    Bonifazi, Paolo
    Erramuzpe, Asier
    Diez, Ibai
    Gabilondo, Inigo
    Boisgontier, Matthieu P.
    Pauwels, Lisa
    Stramaglia, Sebastiano
    Swinnen, Stephan P.
    Cortes, Jesus M.
    [J]. HUMAN BRAIN MAPPING, 2018, 39 (12) : 4663 - 4677
  • [4] Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
  • [5] The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites
    Casey, B. J.
    Cannonier, Tariq
    Conley, May I.
    Cohen, Alexandra O.
    Barch, Deanna M.
    Heitzeg, Mary M.
    Soules, Mary E.
    Teslovich, Theresa
    Dellarco, Danielle V.
    Garavan, Hugh
    Orr, Catherine A.
    Wager, Tor D.
    Banich, Marie T.
    Speer, Nicole K.
    Sutherland, Matthew T.
    Riedel, Michael C.
    Dick, Anthony S.
    Bjork, James M.
    Thomas, Kathleen M.
    Chaarani, Bader
    Mejia, Margie H.
    Hagler, Donald J., Jr.
    Cornejo, M. Daniela
    Sicat, Chelsea S.
    Harms, Michael P.
    Dosenbach, Nico U. F.
    Rosenberg, Monica
    Earl, Eric
    Bartsch, Hauke
    Watts, Richard
    Polimeni, Jonathan R.
    Kuperman, Joshua M.
    Fair, Damien A.
    Dale, Anders M.
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 : 43 - 54
  • [6] Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study
    Cetin-Karayumak, Suheyla
    Zhang, Fan
    Zurrin, Ryan
    Billah, Tashrif
    Zekelman, Leo
    Makris, Nikos
    Pieper, Steve
    O'Donnell, Lauren J.
    Rathi, Yogesh
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [7] Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
    Chamberland, Maxime
    Raven, Erika P.
    Genc, Sila
    Duffy, Kate
    Descoteaux, Maxime
    Parker, Greg D.
    Tax, Chantal M. W.
    Jones, Derek K.
    [J]. NEUROIMAGE, 2019, 200 : 89 - 100
  • [8] Chen JB, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-60340-y
  • [9] Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
    Chen, Ming
    Li, Hailong
    Wang, Jinghua
    Yuan, Weihong
    Altaye, Mekbib
    Parikh, Nehal A.
    He, Lili
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [10] TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance
    Chen, Yuqian
    Zekelman, Leo R.
    Zhang, Chaoyi
    Xue, Tengfei
    Song, Yang
    Makris, Nikos
    Rathi, Yogesh
    Golby, Alexandra J.
    Cai, Weidong
    Zhang, Fan
    O'Donnell, Lauren J.
    [J]. MEDICAL IMAGE ANALYSIS, 2024, 94