Hardware-Efficient Implementation of Principal Component Analysis Using High-Level Synthesis

被引:0
|
作者
Kumar, Venkata Siva K. [1 ]
Sabat, Samrat L. [1 ]
机构
[1] Univ Hyderabad, Sch Phys, CASEST, Hyderabad, Telangana, India
来源
10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024 | 2024年
关键词
Whitening; Lanczos; Implicit TriQR; Eigenvalues; FPGA; PYNQ;
D O I
10.1109/CONECCT62155.2024.10677202
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data whitening is a commonly used technique for preprocessing the raw data to reduce redundancy. The Principal Component Analysis (PCA) algorithm is often employed in the whitening process for dimensionality reduction. Eigenvalue decomposition is a critical and high-time complexity module in PCA. This paper presents an area-efficient implementation of PCA utilizing eigenvalue decomposition with the Lanczos and implicit TriQR algorithm. The hardware is validated on the Pynq-Z1 FPGA using the Xilinx Vivado High-Level Synthesis (HLS) platform, employing loop pipeline optimization. A complete System on Chip solution is developed by interfacing the processor and hardware IP logic unit using the AXI-Lite bus interface. The hardware implementation demonstrates superior resource utilization compared to existing implementations while achieving comparable hardware execution time and frequency, particularly for an input matrix size of 16 x 30.
引用
收藏
页数:5
相关论文
empty
未找到相关数据