Prediction of Star Formation Rates Using an Artificial Neural Network

被引:0
|
作者
Ayubinia, Ashraf [1 ]
Woo, Jong-Hak [1 ]
Hafezianzadeh, Fatemeh [2 ]
Kim, Taehwan [3 ]
Kim, Changseok [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Dept Phys, Pittsburgh, PA 15213 USA
[3] UNIST, Artificial Intelligence Grad Sch, Ulsan, South Korea
来源
ASTROPHYSICAL JOURNAL | 2025年 / 980卷 / 02期
基金
新加坡国家研究基金会; 美国国家航空航天局;
关键词
SPECTROSCOPIC TARGET SELECTION; GALAXY-EVOLUTION-EXPLORER; FORMATION RATE DENSITY; DIGITAL SKY SURVEY; STELLAR MASSES; H-ALPHA; FORMATION HISTORIES; INTERSTELLAR DUST; FORMING GALAXIES; REDSHIFT;
D O I
10.3847/1538-4357/ada366
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this study we develop an artificial neural network to estimate the infrared (IR) luminosity and star formation rates (SFR) of galaxies. Our network is trained using "true" IR luminosity values derived from modeling the IR spectral energy distributions of FIR-detected galaxies. We explore five different sets of input features, each incorporating optical, mid-infrared, near-infrared, ultraviolet, and emission line data, along with spectroscopic redshifts and uncertainties. All feature sets yield similar IR luminosity predictions, but including all photometric data leads to slightly improved performance. This suggests that comprehensive photometric information enhances the accuracy of our predictions. Our network is applied to a sample of SDSS galaxies defined as unseen data, and the results are compared with three published catalogs of SFRs. Overall, our network demonstrates excellent performance for star-forming galaxies, while we observe discrepancies in composite and AGN samples. These inconsistencies may stem from uncertainties inherent in the compared catalogs or potential limitations in the performance of our network.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Austenite formation temperature prediction in steels using an artificial neural network
    Arjomandi, M.
    Sadati, S. H.
    Khorsand, H.
    Abdoos, H.
    DIFFUSION IN SOLIDS AND LIQUIDS III, 2008, 273-276 : 335 - 341
  • [2] An artificial neural network model for prediction of drying rates
    Islam, MR
    Sablani, SS
    Mujumdar, AS
    DRYING TECHNOLOGY, 2003, 21 (09) : 1867 - 1884
  • [3] Prediction Modeling of Construction Labor Production Rates using Artificial Neural Network
    Muqeem, Sana
    Idrus, Arazi B.
    Khamidi, Mohd Faris
    Bin Zakaria, Saiful
    ENVIRONMENTAL SCIENCE AND TECHNOLOGY, PT 2, 2011, 6 : 32 - 36
  • [4] Terrorism prediction using artificial neural network
    Soliman G.M.A.
    Abou-El-Enien T.H.M.
    Revue d'Intelligence Artificielle, 2019, 33 (02) : 81 - 87
  • [5] Prediction of Diabetes by using Artificial Neural Network
    Sapon, Muhammad Akmal
    Ismail, Khadijah
    Zainudin, Suehazlyn
    CIRCUITS, SYSTEM AND SIMULATION, 2011, 7 : 299 - 303
  • [6] Network Traffic Anomaly Prediction Using Artificial Neural Network
    Ciptaningtyas, Hening Titi
    Fatichah, Chastine
    Sabila, Altea
    ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016, 2017, 1818
  • [7] Prediction of Formation Water Sensitivity Using Multiple Linear Regression and Artificial Neural Network
    Bai, Mingxing
    Sun, Yuxue
    Patil, P. A.
    Reinicke, K. M.
    OIL GAS-EUROPEAN MAGAZINE, 2012, 38 (03): : 132 - +
  • [8] Artificial neural network applied to austenite formation temperatures prediction
    You, W
    Bai, BZ
    Fang, HS
    Xie, XS
    ACTA METALLURGICA SINICA, 2004, 40 (11) : 1133 - 1137
  • [9] Artificial neural network prediction of tetragonal lysozyme face growth rates
    Noever, D
    Pusey, ML
    Forsythe, EL
    Baskaran, S
    JOURNAL OF CRYSTAL GROWTH, 1996, 167 (1-2) : 221 - 236
  • [10] Using artificial neural network models for eutrophication prediction
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhu, Chaowei
    2013 INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2013 ISEST), 2013, 18 : 310 - 316