A Multimodal Federated Learning Framework for Modality Incomplete Scenarios in Healthcare

被引:1
作者
An, Ying [1 ]
Bai, Yaqi [2 ]
Liu, Yuan [2 ]
Guo, Lin [1 ]
Chen, Xianlai [1 ]
机构
[1] Cent South Univ, Big Data Inst, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS, PT II, ISBRA 2024 | 2024年 / 14955卷
基金
中国国家自然科学基金;
关键词
Multi-modal; Federated learning; Missing modality;
D O I
10.1007/978-981-97-5131-0_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal federated learning has been found extensive application in healthcare for collaborative model training while ensuring data privacy and security. However, most existing methods assume completeness of all modalities on each client, disregarding the issue of modality incongruity between clients due to missing modalities. In this study, we propose a novel multimodal federated learning framework to address knowledge sharing and collaborative learning among heterogeneous clients in scenarios with incomplete modalities. To tackle traditional federated aggregation failures resulting from incomplete modalities, our approach initially employs a cluster stepwise aggregation strategy to group clients with consistent modalities into clusters, facilitating inter-cluster communication by aggregating feature encoders of the same modality. Furthermore, to compensate for the insufficient ability of global gradient information in conveying semantic features of heterogeneous clients, a prototype contrastive integration strategy is introduced to achieve effective semantic knowledge sharing through intra- and inter-modality prototype contrastive learning. Experimental results demonstrate the effectiveness of our approach in scenarios with incomplete modalities.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 21 条
[1]  
Agbley B.L.Y., 2021, 2021 18 INT COMP C W, P238, DOI DOI 10.1109/ICCWAMTIP53232.2021.9674116
[2]  
Chen HK, 2023, Arxiv, DOI arXiv:2308.12305
[3]   MDFNet: application of multimodal fusion method based on skin image and clinical data to skin cancer classification [J].
Chen, Qian ;
Li, Min ;
Chen, Chen ;
Zhou, Panyun ;
Lv, Xiaoyi ;
Chen, Cheng .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (07) :3287-3299
[4]   Towards Optimal Multi-Modal Federated Learning on Non-IID Data with Hierarchical Gradient Blending [J].
Chen, Sijia ;
Li, Baochun .
IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, :1469-1478
[5]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[6]  
Jeong E, 2023, Arxiv, DOI arXiv:1811.11479
[7]   Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers [J].
Khader, Firas ;
Mueller-Franzes, Gustav ;
Wang, Tianci ;
Han, Tianyu ;
Arasteh, Soroosh Tayebi ;
Haarburger, Christoph ;
Stegmaier, Johannes ;
Bressem, Keno ;
Kuhl, Christiane ;
Nebelung, Sven ;
Kather, Jakob Nikolas ;
Truhn, Daniel .
RADIOLOGY, 2023, 309 (01)
[8]  
Le HQ, 2023, Arxiv, DOI arXiv:2307.13214
[9]  
Li T, 2020, P MACHINE LEARNING S, V2, P429
[10]  
Li XX, 2021, Arxiv, DOI arXiv:2102.07623