Quantum unique ergodicity for Eisenstein series on Bruhat-Tits buildings

被引:0
|
作者
Kaneko, Ikuya [1 ]
Koyama, Shin-ya [2 ]
机构
[1] CALTECH, Div Phys Math & Astron, 1200 East Calif Blvd, Pasadena, CA 91125 USA
[2] Toyo Univ, Dept Mech Engn, 2100 Kujirai, Kawagoe, Saitama 3508585, Japan
关键词
Quantum unique ergodicity; Eisenstein series; Function fields; Level aspect; VALUES;
D O I
10.1016/j.jnt.2024.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the quantum unique ergodicity conjecture for Eisenstein series over function fields in the level aspect. Adapting the machinery of Luo and Sarnak (1995), we employ the spectral decomposition and handle the cuspidal and Eisenstein contributions separately. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:440 / 459
页数:20
相关论文
共 50 条
  • [31] Geodesic bulk diagrams on the Bruhat-Tits tree
    Gubser, Steven S.
    Parikh, Sarthak
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [32] SCATTERING ON THE BRUHAT-TITS TREE .1.
    ROMANOV, RV
    RUDIN, GE
    PHYSICS LETTERS A, 1995, 198 (02) : 113 - 118
  • [33] Compactification of the Bruhat-Tits building of PGL by seminorms
    Annette Werner
    Mathematische Zeitschrift, 2004, 248 : 511 - 526
  • [34] Representation theory and sheaves on the bruhat-tits building
    Schneider P.
    Stuhler U.
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1997, 85 (1): : 97 - 191
  • [35] Compactification of the Bruhat-Tits building of PGL by seminorms
    Werner, A
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (03) : 511 - 526
  • [36] REPRESENTATION THEORY AND SHEAVES ON THE BRUHAT-TITS BUILDING
    Schneider, Peter
    Stuhler, Ulrich
    PUBLICATIONS MATHEMATIQUES, 1997, (85): : 97 - 191
  • [37] Some functorial properties of the Bruhat-Tits building
    Landvogt, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 518 : 213 - 241
  • [38] Distance formulas in Bruhat-Tits building of SLd(Qp)
    Lachman, Dominik
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (04)
  • [39] Farey maps, Diophantine approximation and Bruhat-Tits tree
    Kim, Dong Han
    Lim, Seonhee
    Nakada, Hitoshi
    Natsui, Rie
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 30 : 14 - 32
  • [40] Parametrizing nilpotent orbits via Bruhat-Tits theory
    DeBacker, S
    ANNALS OF MATHEMATICS, 2002, 156 (01) : 295 - 332