A Robust and Efficient Multiscenario Object Detection Network for Edge Devices

被引:0
作者
Chen, Zhihuan [1 ]
Luo, Aiwen [1 ]
Ding, Lin [1 ]
Zheng, Jialu [1 ]
Huang, Zunkai [2 ]
机构
[1] Jinan Univ, Dept Elect Engn, Guangzhou 510632, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Feature extraction; Accuracy; Autonomous aerial vehicles; Remote sensing; Neck; Kernel; Image edge detection; YOLO; Computational modeling; Edge device; lightweight neural network; object detection; unmanned aerial vehicle (UAV);
D O I
10.1109/LGRS.2025.3529830
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep-learning-based object detection has been increasingly attractive in various intelligent edge applications, including remote sensing and autonomous driving. However, achieving an optimal tradeoff between computing efficiency and detection accuracy is challenging. YOLO-series networks provide fast and lightweight detection but often sacrifice accuracy. In this work, we propose the multibranch cascading aggregation YOLO (MCA-YOLO) model, designed for multiscenario object detection tasks on edge devices. MCA-YOLO enhances detection accuracy by learning comprehensive feature information while maintaining computational efficiency through three key components: multibranch spatial pyramid pooling (MSPP), Ghost-convolution (GC)-based efficient layer aggregation network (G-ELAN), and hierarchical aggregation neck (HAN) that integrates MSPP and G-ELAN with GC. We train and validate MCA-YOLO using four benchmark datasets: VOC, COCO, SIMD, and VisDrone. The experimental results demonstrate significant improvements in detection accuracy and inference speed. Besides, we deploy the MCA-YOLO on a Jetson Xavier NX edge device embedded in an unmanned aerial vehicle (UAV), creating a remote sensing system capable of real-time, high-accuracy object detection. Our code is publicly available at https://github.com/lawlawCodes/MCA-YOLO.
引用
收藏
页数:5
相关论文
共 32 条
[1]  
amovlab, 2023, Prometheus450 Drone
[2]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934]
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]   Cross-Scale Feature Fusion for Object Detection in Optical Remote Sensing Images [J].
Cheng, Gong ;
Si, Yongjie ;
Hong, Hailong ;
Yao, Xiwen ;
Guo, Lei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (03) :431-435
[5]  
Ding X., 2021, PROC IEEE CVF C COM
[6]   Remote Sensing Object Detection Based on Receptive Field Expansion Block [J].
Dong, Xiaohu ;
Fu, Ruigang ;
Gao, Yinghui ;
Qin, Yao ;
Ye, Yuanxin ;
Li, Biao .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[7]  
Du D., 2019, P IEEE CVF INT C COM, P226
[8]  
Duan K., 2019, P IEEECVF INT C COMP
[9]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[10]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448