Data-driven identification of high-nature value grasslands using Harmonized Landsat Sentinel-2 time series data

被引:1
作者
Groeschler, Kim-Cedric [1 ]
Martens, Tjark [2 ]
Oppelt, Natascha [2 ]
Schrautzer, Joachim [1 ]
机构
[1] Univ Kiel, Dept Geog, Ludewig Meyn Str 8, D-24118 Kiel, Schleswig Holst, Germany
[2] Univ Kiel, Inst Ecosyst Res, Olshausenstr 75, D-24118 Kiel, Schleswig Holst, Germany
关键词
Grassland; Conservation; Harmonized Landsat Sentinel-2; XGBoost; SHAP; Time series; PROTECTED AREAS; VEGETATION; COMMUNITIES; INTENSITY; SUPPORT; CLOUD;
D O I
10.1016/j.rsase.2024.101427
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Europe's high-nature value (HNV) grasslands have significantly declined in recent decades. European conservation strategies are mainly confined to protected areas, and many national initiatives aiming for comprehensive coverage suffer from long and irregular monitoring intervals. Addressing this, we propose a data-driven approach to derive information about the location, extent and HNV status of grasslands to improve the efficiency of large-scale field mappings. Serving as a representative example of European and national grassland monitoring, we utilize the regional habitat map of Schleswig-Holstein, Germany, in conjunction with Harmonized Landsat Sentinel-2 time series data to train XGBoost models for the period of 2017-2022. Our models achieved high classification performance, distinguishing eight grassland classes with average F1-scores of 0.89 before and 0.86 after feature selection. We examined model decision-making patterns using an adapted version of SHapley Additive exPlanation values, finding that start-of-season, end-of-season, Red-Edge, and spectral change features significantly impacted predictions. We produced annual HNV grassland maps and, by aggregating yearly results, derived a robust estimate of the HNV status in our study area. Applying our HNV estimate to an independent dataset comprising 2363 km2 of grassland plots with unknown HNV status, we identified 84 km2 as HNV, highlighting the significance of our result. Overall, our study demonstrates how integrating remote sensing data enhances the efficiency and comprehensiveness of large-scale mapping initiatives.
引用
收藏
页数:19
相关论文
共 105 条
[51]   The economic value of grassland ecosystem services: A global meta-analysis [J].
Liu, Huifang ;
Hou, Lingling ;
Kang, Nannan ;
Nan, Zhibiao ;
Huang, Jikun .
GRASSLAND RESEARCH, 2022, 1 (01) :63-74
[52]  
LLUR, 2021, Oberverwaltungsgericht Schleswig-Holstein OVG Schleswig-Holstein Higher Administrative Court of Schleswig-Holstein
[53]  
LLUR, 2015, Moore in Schleswig-Holstein: Geschichte-Bedeutung-Schutz
[54]  
LLUR, 2019, Die Boden Schleswig-Holsteins Mit Erlauterungen Zur Bodenubersichtskarte 1:250.000
[55]   Spectro-Temporal Heterogeneity Measures from Dense High Spatial Resolution Satellite Image Time Series: Application to Grassland Species Diversity Estimation [J].
Lopes, Mailys ;
Fauvel, Mathieu ;
Ouin, Annie ;
Girard, Stephane .
REMOTE SENSING, 2017, 9 (10)
[56]   Bridging the gap between the Natura 2000 regional conservation status and local conservation objectives [J].
Louette, Gerald ;
Adriaens, Dries ;
Adriaens, Peter ;
Anselin, Anny ;
Devos, Koen ;
Sannen, Kurt ;
Van Landuyt, Wouter ;
Paelinckx, Desire ;
Hoffmann, Maurice .
JOURNAL FOR NATURE CONSERVATION, 2011, 19 (04) :224-235
[57]  
Lundberg SM, 2017, ADV NEUR IN, V30
[58]   From local explanations to global understanding with explainable AI for trees [J].
Lundberg, Scott M. ;
Erion, Gabriel ;
Chen, Hugh ;
DeGrave, Alex ;
Prutkin, Jordan M. ;
Nair, Bala ;
Katz, Ronit ;
Himmelfarb, Jonathan ;
Bansal, Nisha ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2020, 2 (01) :56-67
[59]   Estimation of Gross Primary Productivity (GPP) Phenology of a Short-Rotation Plantation Using Remotely Sensed Indices Derived from Sentinel-2 Images [J].
Maleki, Maral ;
Arriga, Nicola ;
Barrios, Jose Miguel ;
Wieneke, Sebastian ;
Liu, Qiang ;
Penuelas, Josep ;
Janssens, Ivan A. ;
Balzarolo, Manuela .
REMOTE SENSING, 2020, 12 (13)
[60]  
Martens T., 2022, Mires and Peat, V28, P1, DOI [10.19189/MaP.2021.OMB.StA.2289, DOI 10.19189/MAP.2021.OMB.STA.2289]