Degree of Difference in Clinical Data and Imaging Based on Machine Learning and Complex Network

被引:0
作者
Kong, Guanqing [1 ]
Li, Xiuxu [2 ]
Wu, Chuanfu [1 ]
Zhang, Lanhua [2 ]
机构
[1] Linyi Peoples Hosp, Ctr Hlth Data Sci, Linyi 276000, Shandong, Peoples R China
[2] Shandong First Med Univ & Shandong Acad Med Sci, Sch Med Informat & Engn, Tai An 271016, Shandong, Peoples R China
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024 | 2024年
关键词
Data driven; Multimodal imaging; Complex network; Machine learning;
D O I
10.1145/3674029.3674054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical patients should have corresponding clinical indicators to characterize the disease. Multimodal data and physiological indicators provide a basis for patient diagnosis and assessment, but small sample data pose statistical difficulties. In order to better support the clinical conclusions, from a data-driven perspective, using machine learning algorithms, we explored the support of physiological indicator data for multimodal data in the case of insufficient samples, and according to the results of the model, it is shown that the data-driven results can better support the final conclusions, and therefore, integrating the multimodal data and the clinical indicators can better provide the diagnosis and assessment conclusions for the clinical patients.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 20 条
  • [1] Anomalous Example Detection in Deep Learning: A Survey
    Bulusu, Saikiran
    Kailkhura, Bhavya
    Li, Bo
    Varshney, Pramod K.
    Song, Dawn
    [J]. IEEE ACCESS, 2020, 8 : 132330 - 132347
  • [2] Cao Q, 2016, P SPE ARG EXPL PROD, DOI DOI 10.2118/180984-MS
  • [3] A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Genetic Disorders Using Various Gene Disorders
    Chaplot, Neelam
    Pandey, Dhiraj
    Kumar, Yogesh
    Sisodia, Pushpendra Singh
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3301 - 3323
  • [4] Mitigating site effects in covariance for machine learning in neuroimaging data
    Chen, Andrew A.
    Beer, Joanne C.
    Tustison, Nicholas J.
    Cook, Philip A.
    Shinohara, Russell T.
    Shou, Haochang
    [J]. HUMAN BRAIN MAPPING, 2022, 43 (04) : 1179 - 1195
  • [5] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [6] Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review
    Cui, Can
    Yang, Haichun
    Wang, Yaohong
    Zhao, Shilin
    Asad, Zuhayr
    Coburn, Lori A.
    Wilson, Keith T.
    Landman, Bennett A.
    Huo, Yuankai
    [J]. PROGRESS IN BIOMEDICAL ENGINEERING, 2023, 5 (02):
  • [7] Dhingra B., 2022, 2022 2 INT C INN SUS, P1
  • [8] A guide to machine learning for biologists
    Greener, Joe G.
    Kandathil, Shaun M.
    Moffat, Lewis
    Jones, David T.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) : 40 - 55
  • [9] Network analysis: a brief overview and tutorial
    Hevey, David
    [J]. HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE, 2018, 6 (01): : 301 - 328
  • [10] Machine learning on small size samples: A synthetic knowledge synthesis
    Kokol, Peter
    Kokol, Marko
    Zagoranski, Saso
    [J]. SCIENCE PROGRESS, 2022, 105 (01)