Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere

被引:0
作者
Constantineau, K. [1 ]
Garcia-Azpeitia, C. [2 ]
Garcia-Naranjo, L. C. [3 ]
Lessard, J. -p. [1 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke West, Montreal, PQ H3A 0B9, Canada
[2] Univ Nacl Autonoma Mexico, Dept Matemat & Mecan, IIMAS, Apdo Postal 20-126,Col San Angel, Mexico City 01000, Mexico
[3] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
POINT VORTICES; VERIFICATION METHODS; STABILITY; MOTION; DYNAMICS; SYSTEMS; SURFACE;
D O I
10.1007/s00220-024-05220-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the N-vortex problem on the sphere assuming that all vorticities have equal strength. We investigate relative equilibria (RE) consisting of n latitudinal rings which are uniformly rotating about the vertical axis with angular velocity omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Each such ring contains m vortices placed at the vertices of a concentric regular polygon and we allow the presence of additional vortices at the poles. We develop a framework to prove existence and orbital stability of branches of RE of this type parametrised by omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Such framework is implemented to rigorously determine and prove stability of segments of branches using computer-assisted proofs. This approach circumvents the analytical complexities that arise when the number of rings n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and allows us to give several new rigorous results. We exemplify our method providing new contributions consisting of the determination of enclosures and proofs of stability of several equilibria and RE for 5 <= N <= 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\le N\le 12$$\end{document}.
引用
收藏
页数:62
相关论文
共 70 条
  • [1] Vortex crystals
    Aref, H
    Newton, PK
    Stremler, MA
    Tokieda, T
    Vainchtein, DL
    [J]. ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 : 1 - 79
  • [2] Point vortex dynamics: A classical mathematics playground
    Aref, Hassan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
  • [3] MINIMIZING THE DISCRETE LOGARITHMIC ENERGY ON THE SPHERE: THE ROLE OF RANDOM POLYNOMIALS
    Armentano, Diego
    Beltran, Carlos
    Shub, Michael
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 2955 - 2965
  • [4] Nonintegrability of two problems in vortex dynamics
    Bagrets, AA
    Bagrets, DA
    [J]. CHAOS, 1997, 7 (03) : 368 - 375
  • [5] Beltrn lvarez C., 2020, Gac. R. Soc. Mat. Esp, V23, P507
  • [6] Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere
    Boatto, S
    Cabral, HE
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) : 216 - 230
  • [7] Bogomolov V. A., 1977, Fluid Dynamics, V12, P863, DOI 10.1007/BF01090320
  • [8] STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE
    Borisov, A. V.
    Kilin, A. A.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02) : 189 - 200
  • [9] A new integrable problem of motion of point vortices on the sphere
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    [J]. IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 39 - +
  • [10] Borisov AV., 1988, Regul. Chaotic Dyn, V3, P28, DOI DOI 10.1070/RD1998V003N01ABEH000059