DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS

被引:1
作者
Huang, Yong [1 ]
Liu, Jiaqian [1 ,2 ]
Xi, Dongmeng [3 ]
Zhao, Yiming [4 ]
机构
[1] Hunan Univ, Inst Math, 2 Lushan S Rd, Changsha 410082, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[3] Shanghai Univ, Dept Math, 266 Jufengyuan Rd, Shanghai 200444, Peoples R China
[4] Syracuse Univ, Dept Math, 130 Sims Dr,215 Carnegie, Syracuse, NY 13244 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
BUSEMANN-PETTY PROBLEM; MINKOWSKI-FIREY THEORY; SUBSPACE CONCENTRATION; AFFINE; INEQUALITIES; INTERIOR; SOBOLEV;
D O I
10.4310/jdg/1727712894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce dual curvature measures for log-concave functions, which in the case of characteristic functions recover the dual curvature measures for convex bodies introduced by Huang-Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The associated Minkowski problem for these dual curvature measures is considered and sufficient conditions in the symmetric setting are demonstrated.
引用
收藏
页码:815 / 860
页数:46
相关论文
共 50 条
[41]   Hypercontractivity for log-subharmonic functions [J].
Graczyk, Piotr ;
Kemp, Todd ;
Loeb, Jean-Jacques .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) :1785-1805
[42]   Concave Continuations of Boolean Functions and Some of Their Properties and Applications [J].
Barotov, Dostonjon N. .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2024, 49 :105-123
[43]   Fractional smoothness of images of logarithmically concave measures under polynomials [J].
Kosov, Egor D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) :390-406
[44]   On the Fekete-Szego problem for concave univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. ;
Wirths, K-J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :432-438
[45]   Curvature measures and soap bubbles beyond convexity [J].
Hug, Daniel ;
Santilli, Mario .
ADVANCES IN MATHEMATICS, 2022, 411
[46]   Bounded size biased couplings, log concave distributions and concentration of measure for occupancy models [J].
Bartroff, Jay ;
Goldstein, Larry ;
Islak, Umit .
BERNOULLI, 2018, 24 (4B) :3283-3317
[47]   Best approximation of functions by log-polynomials [J].
Alonso-Gutierrez, David ;
Merino, Bernardo Gonzalez ;
Villa, Rafael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (05)
[48]   Concave Continuations of Boolean-like Functions and Some of Their Properties [J].
Barotov, Dostonjon N. .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2025, 51 :82-100
[49]   On Lp-Affine Surface Area and Curvature Measures [J].
Zhao, Yiming .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (05) :1387-1423
[50]   Prescribing Capacitary Curvature Measures on Planar Convex Domains [J].
Xiao, Jie .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :2225-2240